summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
authorSebastian Raschka <mail@sebastianraschka.com>2017-10-17 04:16:06 -0400
committerAdam Paszke <adam.paszke@gmail.com>2017-10-17 10:16:06 +0200
commitf176c864f0d04a8b5d24a1774b3b766cb89b8a29 (patch)
treef91a72e2bfb0c86ed053e01750cf59c82c35f2a4 /README.md
parent9d4d0640f26b044747927aa8cfc818d6e7861b7a (diff)
downloadpytorch-f176c864f0d04a8b5d24a1774b3b766cb89b8a29.tar.gz
pytorch-f176c864f0d04a8b5d24a1774b3b766cb89b8a29.tar.bz2
pytorch-f176c864f0d04a8b5d24a1774b3b766cb89b8a29.zip
minor autograd reference change in readme (#3144)
Diffstat (limited to 'README.md')
-rw-r--r--README.md2
1 files changed, 1 insertions, 1 deletions
diff --git a/README.md b/README.md
index c82646bbf2..b10bdae8d7 100644
--- a/README.md
+++ b/README.md
@@ -89,7 +89,7 @@ Changing the way the network behaves means that one has to start from scratch.
With PyTorch, we use a technique called reverse-mode auto-differentiation, which allows you to
change the way your network behaves arbitrarily with zero lag or overhead. Our inspiration comes
from several research papers on this topic, as well as current and past work such as
-[autograd](https://github.com/twitter/torch-autograd),
+[torch-autograd](https://github.com/twitter/torch-autograd),
[autograd](https://github.com/HIPS/autograd),
[Chainer](http://chainer.org), etc.