1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
"""Mixin classes for custom array types that don't inherit from ndarray."""
from __future__ import division, absolute_import, print_function
import sys
from numpy.core import umath as um
# None of this module should be exposed in top-level NumPy module.
__all__ = []
def _binary_method(ufunc):
def func(self, other):
try:
if other.__array_ufunc__ is None:
return NotImplemented
except AttributeError:
pass
return self.__array_ufunc__(ufunc, '__call__', self, other)
return func
def _reflected_binary_method(ufunc):
def func(self, other):
try:
if other.__array_ufunc__ is None:
return NotImplemented
except AttributeError:
pass
return self.__array_ufunc__(ufunc, '__call__', other, self)
return func
def _inplace_binary_method(ufunc):
def func(self, other):
result = self.__array_ufunc__(
ufunc, '__call__', self, other, out=(self,))
if result is NotImplemented:
raise TypeError('unsupported operand types for in-place '
'arithmetic: %s and %s'
% (type(self).__name__, type(other).__name__))
return result
return func
def _numeric_methods(ufunc):
return (_binary_method(ufunc),
_reflected_binary_method(ufunc),
_inplace_binary_method(ufunc))
def _unary_method(ufunc):
def func(self):
return self.__array_ufunc__(ufunc, '__call__', self)
return func
class NDArrayOperatorsMixin(object):
"""Mixin defining all operator special methods using __array_ufunc__.
This class implements the special methods for almost all of Python's
builtin operators defined in the `operator` module, including comparisons
(``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by
deferring to the ``__array_ufunc__`` method, which subclasses must
implement.
This class does not yet implement the special operators corresponding
to ``divmod``, unary ``+`` or ``matmul`` (``@``), because these operation
do not yet have corresponding NumPy ufuncs.
It is useful for writing classes that do not inherit from `numpy.ndarray`,
but that should support arithmetic and numpy universal functions like
arrays as described in :ref:`A Mechanism for Overriding Ufuncs
<neps.ufunc-overrides>`.
As an trivial example, consider this implementation of an ``ArrayLike``
class that simply wraps a NumPy array and ensures that the result of any
arithmetic operation is also an ``ArrayLike`` object::
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
def __init__(self, value):
self.value = np.asarray(value)
# One might also consider adding the built-in list type to this
# list, to support operations like np.add(array_like, list)
_HANDLED_TYPES = (np.ndarray, numbers.Number)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.get('out', ())
for x in inputs + out:
# Only support operations with instances of _HANDLED_TYPES,
# or instances of ArrayLike that are superclasses of this
# object's type.
if not (isinstance(x, self._HANDLED_TYPES) or
(isinstance(x, ArrayLike) and
isinstance(self, type(x)))):
return NotImplemented
# Defer to the implementation of the ufunc on unwrapped values.
# Use ArrayLike instead of type(self) for isinstance to allow
# subclasses that don't override __array_ufunc__ to handle
# ArrayLike objects.
inputs = tuple(x.value if isinstance(x, ArrayLike) else x
for x in inputs)
if out:
kwargs['out'] = tuple(
x.value if isinstance(x, ArrayLike) else x
for x in out)
result = getattr(ufunc, method)(*inputs, **kwargs)
if type(result) is tuple:
# multiple return values
return tuple(type(self)(x) for x in result)
elif method == 'at':
# no return value
return None
else:
# one return value
return type(self)(result)
def __repr__(self):
return '%s(%r)' % (type(self).__name__, self.value)
In interactions between ``ArrayLike`` objects and numbers or numpy arrays,
the result is always another ``ArrayLike``:
>>> x = ArrayLike([1, 2, 3])
>>> x - 1
ArrayLike(array([0, 1, 2]))
>>> 1 - x
ArrayLike(array([ 0, -1, -2]))
>>> np.arange(3) - x
ArrayLike(array([-1, -1, -1]))
>>> x - np.arange(3)
ArrayLike(array([1, 1, 1]))
Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations
with arbitrary, unrecognized types. This ensures that interactions with
ArrayLike preserve a well-defined casting hierarchy.
"""
# comparisons don't have reflected and in-place versions
__lt__ = _binary_method(um.less)
__le__ = _binary_method(um.less_equal)
__eq__ = _binary_method(um.equal)
__ne__ = _binary_method(um.not_equal)
__gt__ = _binary_method(um.greater)
__ge__ = _binary_method(um.greater_equal)
# numeric methods
__add__, __radd__, __iadd__ = _numeric_methods(um.add)
__sub__, __rsub__, __isub__ = _numeric_methods(um.subtract)
__mul__, __rmul__, __imul__ = _numeric_methods(um.multiply)
if sys.version_info.major < 3:
# Python 3 uses only __truediv__ and __floordiv__
__div__, __rdiv__, __idiv__ = _numeric_methods(um.divide)
__truediv__, __rtruediv__, __itruediv__ = _numeric_methods(um.true_divide)
__floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods(
um.floor_divide)
__mod__, __rmod__, __imod__ = _numeric_methods(um.mod)
# TODO: handle the optional third argument for __pow__?
__pow__, __rpow__, __ipow__ = _numeric_methods(um.power)
__lshift__, __rlshift__, __ilshift__ = _numeric_methods(um.left_shift)
__rshift__, __rrshift__, __irshift__ = _numeric_methods(um.right_shift)
__and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and)
__xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor)
__or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or)
# unary methods
__neg__ = _unary_method(um.negative)
__abs__ = _unary_method(um.absolute)
__invert__ = _unary_method(um.invert)
|