summaryrefslogtreecommitdiff
path: root/numpy/core/tests/test_mem_overlap.py
blob: 9c17ed2106fadbcd19349860ad7ee54131123d85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
from __future__ import division, absolute_import, print_function

import sys
import itertools

import numpy as np
from numpy.testing import (run_module_suite, assert_, assert_raises, assert_equal,
                           assert_array_equal, assert_allclose, dec)

from numpy.core.multiarray_tests import solve_diophantine, internal_overlap
from numpy.core import umath_tests
from numpy.lib.stride_tricks import as_strided
from numpy.compat import long

if sys.version_info[0] >= 3:
    xrange = range


ndims = 2
size = 10
shape = tuple([size] * ndims)

MAY_SHARE_BOUNDS = 0
MAY_SHARE_EXACT = -1


def _indices_for_nelems(nelems):
    """Returns slices of length nelems, from start onwards, in direction sign."""

    if nelems == 0:
        return [size // 2]  # int index

    res = []
    for step in (1, 2):
        for sign in (-1, 1):
            start = size // 2 - nelems * step * sign // 2
            stop = start + nelems * step * sign
            res.append(slice(start, stop, step * sign))

    return res


def _indices_for_axis():
    """Returns (src, dst) pairs of indices."""

    res = []
    for nelems in (0, 2, 3):
        ind = _indices_for_nelems(nelems)

        # no itertools.product available in Py2.4
        res.extend([(a, b) for a in ind for b in ind])  # all assignments of size "nelems"

    return res


def _indices(ndims):
    """Returns ((axis0_src, axis0_dst), (axis1_src, axis1_dst), ... ) index pairs."""

    ind = _indices_for_axis()

    # no itertools.product available in Py2.4

    res = [[]]
    for i in range(ndims):
        newres = []
        for elem in ind:
            for others in res:
                newres.append([elem] + others)
        res = newres

    return res


def _check_assignment(srcidx, dstidx):
    """Check assignment arr[dstidx] = arr[srcidx] works."""

    arr = np.arange(np.product(shape)).reshape(shape)

    cpy = arr.copy()

    cpy[dstidx] = arr[srcidx]
    arr[dstidx] = arr[srcidx]

    assert_(np.all(arr == cpy),
            'assigning arr[%s] = arr[%s]' % (dstidx, srcidx))


def test_overlapping_assignments():
    # Test automatically generated assignments which overlap in memory.

    inds = _indices(ndims)

    for ind in inds:
        srcidx = tuple([a[0] for a in ind])
        dstidx = tuple([a[1] for a in ind])

        _check_assignment(srcidx, dstidx)


@dec.slow
def test_diophantine_fuzz():
    # Fuzz test the diophantine solver
    rng = np.random.RandomState(1234)

    max_int = np.iinfo(np.intp).max

    for ndim in range(10):
        feasible_count = 0
        infeasible_count = 0

        min_count = 500//(ndim + 1)

        while min(feasible_count, infeasible_count) < min_count:
            # Ensure big and small integer problems
            A_max = 1 + rng.randint(0, 11, dtype=np.intp)**6
            U_max = rng.randint(0, 11, dtype=np.intp)**6

            A_max = min(max_int, A_max)
            U_max = min(max_int-1, U_max)

            A = tuple(int(rng.randint(1, A_max+1, dtype=np.intp))
                      for j in range(ndim))
            U = tuple(int(rng.randint(0, U_max+2, dtype=np.intp))
                      for j in range(ndim))

            b_ub = min(max_int-2, sum(a*ub for a, ub in zip(A, U)))
            b = rng.randint(-1, b_ub+2, dtype=np.intp)

            if ndim == 0 and feasible_count < min_count:
                b = 0

            X = solve_diophantine(A, U, b)

            if X is None:
                # Check the simplified decision problem agrees
                X_simplified = solve_diophantine(A, U, b, simplify=1)
                assert_(X_simplified is None, (A, U, b, X_simplified))

                # Check no solution exists (provided the problem is
                # small enough so that brute force checking doesn't
                # take too long)
                try:
                    ranges = tuple(xrange(0, a*ub+1, a) for a, ub in zip(A, U))
                except OverflowError:
                    # xrange on 32-bit Python 2 may overflow
                    continue

                size = 1
                for r in ranges:
                    size *= len(r)
                if size < 100000:
                    assert_(not any(sum(w) == b for w in itertools.product(*ranges)))
                    infeasible_count += 1
            else:
                # Check the simplified decision problem agrees
                X_simplified = solve_diophantine(A, U, b, simplify=1)
                assert_(X_simplified is not None, (A, U, b, X_simplified))

                # Check validity
                assert_(sum(a*x for a, x in zip(A, X)) == b)
                assert_(all(0 <= x <= ub for x, ub in zip(X, U)))
                feasible_count += 1


def test_diophantine_overflow():
    # Smoke test integer overflow detection
    max_intp = np.iinfo(np.intp).max
    max_int64 = np.iinfo(np.int64).max

    if max_int64 <= max_intp:
        # Check that the algorithm works internally in 128-bit;
        # solving this problem requires large intermediate numbers
        A = (max_int64//2, max_int64//2 - 10)
        U = (max_int64//2, max_int64//2 - 10)
        b = 2*(max_int64//2) - 10

        assert_equal(solve_diophantine(A, U, b), (1, 1))


def check_may_share_memory_exact(a, b):
    got = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT)

    assert_equal(np.may_share_memory(a, b),
                 np.may_share_memory(a, b, max_work=MAY_SHARE_BOUNDS))

    a.fill(0)
    b.fill(0)
    a.fill(1)
    exact = b.any()

    err_msg = ""
    if got != exact:
        err_msg = "    " + "\n    ".join([
            "base_a - base_b = %r" % (a.__array_interface__['data'][0] - b.__array_interface__['data'][0],),
            "shape_a = %r" % (a.shape,),
            "shape_b = %r" % (b.shape,),
            "strides_a = %r" % (a.strides,),
            "strides_b = %r" % (b.strides,),
            "size_a = %r" % (a.size,),
            "size_b = %r" % (b.size,)
        ])

    assert_equal(got, exact, err_msg=err_msg)


def test_may_share_memory_manual():
    # Manual test cases for may_share_memory

    # Base arrays
    xs0 = [
        np.zeros([13, 21, 23, 22], dtype=np.int8),
        np.zeros([13, 21, 23*2, 22], dtype=np.int8)[:,:,::2,:]
    ]

    # Generate all negative stride combinations
    xs = []
    for x in xs0:
        for ss in itertools.product(*(([slice(None), slice(None, None, -1)],)*4)):
            xp = x[ss]
            xs.append(xp)

    for x in xs:
        # The default is a simple extent check
        assert_(np.may_share_memory(x[:,0,:], x[:,1,:]))
        assert_(np.may_share_memory(x[:,0,:], x[:,1,:], max_work=None))

        # Exact checks
        check_may_share_memory_exact(x[:,0,:], x[:,1,:])
        check_may_share_memory_exact(x[:,::7], x[:,3::3])

        try:
            xp = x.ravel()
            if xp.flags.owndata:
                continue
            xp = xp.view(np.int16)
        except ValueError:
            continue

        # 0-size arrays cannot overlap
        check_may_share_memory_exact(x.ravel()[6:6],
                                     xp.reshape(13, 21, 23, 11)[:,::7])

        # Test itemsize is dealt with
        check_may_share_memory_exact(x[:,::7],
                                     xp.reshape(13, 21, 23, 11))
        check_may_share_memory_exact(x[:,::7],
                                     xp.reshape(13, 21, 23, 11)[:,3::3])
        check_may_share_memory_exact(x.ravel()[6:7],
                                     xp.reshape(13, 21, 23, 11)[:,::7])

    # Check unit size
    x = np.zeros([1], dtype=np.int8)
    check_may_share_memory_exact(x, x)
    check_may_share_memory_exact(x, x.copy())


def iter_random_view_pairs(x, same_steps=True, equal_size=False):
    rng = np.random.RandomState(1234)

    if equal_size and same_steps:
        raise ValueError()

    def random_slice(n, step):
        start = rng.randint(0, n+1, dtype=np.intp)
        stop = rng.randint(start, n+1, dtype=np.intp)
        if rng.randint(0, 2, dtype=np.intp) == 0:
            stop, start = start, stop
            step *= -1
        return slice(start, stop, step)

    def random_slice_fixed_size(n, step, size):
        start = rng.randint(0, n+1 - size*step)
        stop = start + (size-1)*step + 1
        if rng.randint(0, 2) == 0:
            stop, start = start-1, stop-1
            if stop < 0:
                stop = None
            step *= -1
        return slice(start, stop, step)

    # First a few regular views
    yield x, x
    for j in range(1, 7, 3):
        yield x[j:], x[:-j]
        yield x[...,j:], x[...,:-j]

    # An array with zero stride internal overlap
    strides = list(x.strides)
    strides[0] = 0
    xp = as_strided(x, shape=x.shape, strides=strides)
    yield x, xp
    yield xp, xp

    # An array with non-zero stride internal overlap
    strides = list(x.strides)
    if strides[0] > 1:
        strides[0] = 1
    xp = as_strided(x, shape=x.shape, strides=strides)
    yield x, xp
    yield xp, xp

    # Then discontiguous views
    while True:
        steps = tuple(rng.randint(1, 11, dtype=np.intp)
                      if rng.randint(0, 5, dtype=np.intp) == 0 else 1
                      for j in range(x.ndim))
        s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps))

        t1 = np.arange(x.ndim)
        rng.shuffle(t1)

        if equal_size:
            t2 = t1
        else:
            t2 = np.arange(x.ndim)
            rng.shuffle(t2)

        a = x[s1]

        if equal_size:
            if a.size == 0:
                continue

            steps2 = tuple(rng.randint(1, max(2, p//(1+pa)))
                           if rng.randint(0, 5) == 0 else 1
                           for p, s, pa in zip(x.shape, s1, a.shape))
            s2 = tuple(random_slice_fixed_size(p, s, pa)
                       for p, s, pa in zip(x.shape, steps2, a.shape))
        elif same_steps:
            steps2 = steps
        else:
            steps2 = tuple(rng.randint(1, 11, dtype=np.intp)
                           if rng.randint(0, 5, dtype=np.intp) == 0 else 1
                           for j in range(x.ndim))

        if not equal_size:
            s2 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps2))

        a = a.transpose(t1)
        b = x[s2].transpose(t2)

        yield a, b


def check_may_share_memory_easy_fuzz(get_max_work, same_steps, min_count):
    # Check that overlap problems with common strides are solved with
    # little work.
    x = np.zeros([17,34,71,97], dtype=np.int16)

    feasible = 0
    infeasible = 0

    pair_iter = iter_random_view_pairs(x, same_steps)

    while min(feasible, infeasible) < min_count:
        a, b = next(pair_iter)

        bounds_overlap = np.may_share_memory(a, b)
        may_share_answer = np.may_share_memory(a, b)
        easy_answer = np.may_share_memory(a, b, max_work=get_max_work(a, b))
        exact_answer = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT)

        if easy_answer != exact_answer:
            # assert_equal is slow...
            assert_equal(easy_answer, exact_answer)

        if may_share_answer != bounds_overlap:
            assert_equal(may_share_answer, bounds_overlap)

        if bounds_overlap:
            if exact_answer:
                feasible += 1
            else:
                infeasible += 1


@dec.slow
def test_may_share_memory_easy_fuzz():
    # Check that overlap problems with common strides are always
    # solved with little work.

    check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: 1,
                                     same_steps=True,
                                     min_count=2000)


@dec.slow
def test_may_share_memory_harder_fuzz():
    # Overlap problems with not necessarily common strides take more
    # work.
    #
    # The work bound below can't be reduced much. Harder problems can
    # also exist but not be detected here, as the set of problems
    # comes from RNG.

    check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: max(a.size, b.size)//2,
                                     same_steps=False,
                                     min_count=2000)


def test_shares_memory_api():
    x = np.zeros([4, 5, 6], dtype=np.int8)

    assert_equal(np.shares_memory(x, x), True)
    assert_equal(np.shares_memory(x, x.copy()), False)

    a = x[:,::2,::3]
    b = x[:,::3,::2]
    assert_equal(np.shares_memory(a, b), True)
    assert_equal(np.shares_memory(a, b, max_work=None), True)
    assert_raises(np.TooHardError, np.shares_memory, a, b, max_work=1)
    assert_raises(np.TooHardError, np.shares_memory, a, b, max_work=long(1))


def test_may_share_memory_bad_max_work():
    x = np.zeros([1])
    assert_raises(OverflowError, np.may_share_memory, x, x, max_work=10**100)
    assert_raises(OverflowError, np.shares_memory, x, x, max_work=10**100)


def test_internal_overlap_diophantine():
    def check(A, U, exists=None):
        X = solve_diophantine(A, U, 0, require_ub_nontrivial=1)

        if exists is None:
            exists = (X is not None)

        if X is not None:
            assert_(sum(a*x for a, x in zip(A, X)) == sum(a*u//2 for a, u in zip(A, U)))
            assert_(all(0 <= x <= u for x, u in zip(X, U)))
            assert_(any(x != u//2 for x, u in zip(X, U)))

        if exists:
            assert_(X is not None, repr(X))
        else:
            assert_(X is None, repr(X))

    # Smoke tests
    check((3, 2), (2*2, 3*2), exists=True)
    check((3*2, 2), (15*2, (3-1)*2), exists=False)


def test_internal_overlap_slices():
    # Slicing an array never generates internal overlap

    x = np.zeros([17,34,71,97], dtype=np.int16)

    rng = np.random.RandomState(1234)

    def random_slice(n, step):
        start = rng.randint(0, n+1, dtype=np.intp)
        stop = rng.randint(start, n+1, dtype=np.intp)
        if rng.randint(0, 2, dtype=np.intp) == 0:
            stop, start = start, stop
            step *= -1
        return slice(start, stop, step)

    cases = 0
    min_count = 5000

    while cases < min_count:
        steps = tuple(rng.randint(1, 11, dtype=np.intp)
                      if rng.randint(0, 5, dtype=np.intp) == 0 else 1
                      for j in range(x.ndim))
        t1 = np.arange(x.ndim)
        rng.shuffle(t1)
        s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps))
        a = x[s1].transpose(t1)

        assert_(not internal_overlap(a))
        cases += 1


def check_internal_overlap(a, manual_expected=None):
    got = internal_overlap(a)

    # Brute-force check
    m = set()
    ranges = tuple(xrange(n) for n in a.shape)
    for v in itertools.product(*ranges):
        offset = sum(s*w for s, w in zip(a.strides, v))
        if offset in m:
            expected = True
            break
        else:
            m.add(offset)
    else:
        expected = False

    # Compare
    if got != expected:
        assert_equal(got, expected, err_msg=repr((a.strides, a.shape)))
    if manual_expected is not None and expected != manual_expected:
        assert_equal(expected, manual_expected)
    return got


def test_internal_overlap_manual():
    # Stride tricks can construct arrays with internal overlap

    # We don't care about memory bounds, the array is not
    # read/write accessed
    x = np.arange(1).astype(np.int8)

    # Check low-dimensional special cases

    check_internal_overlap(x, False) # 1-dim
    check_internal_overlap(x.reshape([]), False) # 0-dim

    a = as_strided(x, strides=(3, 4), shape=(4, 4))
    check_internal_overlap(a, False)

    a = as_strided(x, strides=(3, 4), shape=(5, 4))
    check_internal_overlap(a, True)

    a = as_strided(x, strides=(0,), shape=(0,))
    check_internal_overlap(a, False)

    a = as_strided(x, strides=(0,), shape=(1,))
    check_internal_overlap(a, False)

    a = as_strided(x, strides=(0,), shape=(2,))
    check_internal_overlap(a, True)

    a = as_strided(x, strides=(0, -9993), shape=(87, 22))
    check_internal_overlap(a, True)

    a = as_strided(x, strides=(0, -9993), shape=(1, 22))
    check_internal_overlap(a, False)

    a = as_strided(x, strides=(0, -9993), shape=(0, 22))
    check_internal_overlap(a, False)


def test_internal_overlap_fuzz():
    # Fuzz check; the brute-force check is fairly slow

    x = np.arange(1).astype(np.int8)

    overlap = 0
    no_overlap = 0
    min_count = 100

    rng = np.random.RandomState(1234)

    while min(overlap, no_overlap) < min_count:
        ndim = rng.randint(1, 4, dtype=np.intp)

        strides = tuple(rng.randint(-1000, 1000, dtype=np.intp)
                        for j in range(ndim))
        shape = tuple(rng.randint(1, 30, dtype=np.intp)
                      for j in range(ndim))

        a = as_strided(x, strides=strides, shape=shape)
        result = check_internal_overlap(a)

        if result:
            overlap += 1
        else:
            no_overlap += 1


def test_non_ndarray_inputs():
    # Regression check for gh-5604

    class MyArray(object):
        def __init__(self, data):
            self.data = data

        @property
        def __array_interface__(self):
            return self.data.__array_interface__

    class MyArray2(object):
        def __init__(self, data):
            self.data = data

        def __array__(self):
            return self.data

    for cls in [MyArray, MyArray2]:
        x = np.arange(5)

        assert_(np.may_share_memory(cls(x[::2]), x[1::2]))
        assert_(not np.shares_memory(cls(x[::2]), x[1::2]))

        assert_(np.shares_memory(cls(x[1::3]), x[::2]))
        assert_(np.may_share_memory(cls(x[1::3]), x[::2]))


def view_element_first_byte(x):
    """Construct an array viewing the first byte of each element of `x`"""
    from numpy.lib.stride_tricks import DummyArray
    interface = dict(x.__array_interface__)
    interface['typestr'] = '|b1'
    interface['descr'] = [('', '|b1')]
    return np.asarray(DummyArray(interface, x))


def assert_copy_equivalent(operation, args, out, **kwargs):
    """
    Check that operation(*args, out=out) produces results
    equivalent to out[...] = operation(*args, out=out.copy())
    """

    kwargs['out'] = out
    kwargs2 = dict(kwargs)
    kwargs2['out'] = out.copy()

    out_orig = out.copy()
    out[...] = operation(*args, **kwargs2)
    expected = out.copy()
    out[...] = out_orig

    got = operation(*args, **kwargs).copy()

    if (got != expected).any():
        assert_equal(got, expected)


class TestUFunc(object):
    """
    Test ufunc call memory overlap handling
    """

    def check_unary_fuzz(self, operation, get_out_axis_size, dtype=np.int16,
                             count=5000):
        shapes = [7, 13, 8, 21, 29, 32]

        rng = np.random.RandomState(1234)

        for ndim in range(1, 6):
            x = rng.randint(0, 2**16, size=shapes[:ndim]).astype(dtype)

            it = iter_random_view_pairs(x, same_steps=False, equal_size=True)

            min_count = count // (ndim + 1)**2

            overlapping = 0
            while overlapping < min_count:
                a, b = next(it)

                a_orig = a.copy()
                b_orig = b.copy()

                if get_out_axis_size is None:
                    assert_copy_equivalent(operation, [a], out=b)

                    if np.shares_memory(a, b):
                        overlapping += 1
                else:
                    for axis in itertools.chain(range(ndim), [None]):
                        a[...] = a_orig
                        b[...] = b_orig

                        # Determine size for reduction axis (None if scalar)
                        outsize, scalarize = get_out_axis_size(a, b, axis)
                        if outsize == 'skip':
                            continue

                        # Slice b to get an output array of the correct size
                        sl = [slice(None)] * ndim
                        if axis is None:
                            if outsize is None:
                                sl = [slice(0, 1)] + [0]*(ndim - 1)
                            else:
                                sl = [slice(0, outsize)] + [0]*(ndim - 1)
                        else:
                            if outsize is None:
                                k = b.shape[axis]//2
                                if ndim == 1:
                                    sl[axis] = slice(k, k + 1)
                                else:
                                    sl[axis] = k
                            else:
                                assert b.shape[axis] >= outsize
                                sl[axis] = slice(0, outsize)
                        b_out = b[tuple(sl)]

                        if scalarize:
                            b_out = b_out.reshape([])

                        if np.shares_memory(a, b_out):
                            overlapping += 1

                        # Check result
                        assert_copy_equivalent(operation, [a], out=b_out, axis=axis)

    @dec.slow
    def test_unary_ufunc_call_fuzz(self):
        self.check_unary_fuzz(np.invert, None, np.int16)

    def test_binary_ufunc_accumulate_fuzz(self):
        def get_out_axis_size(a, b, axis):
            if axis is None:
                if a.ndim == 1:
                    return a.size, False
                else:
                    return 'skip', False  # accumulate doesn't support this
            else:
                return a.shape[axis], False

        self.check_unary_fuzz(np.add.accumulate, get_out_axis_size,
                              dtype=np.int16, count=500)

    def test_binary_ufunc_reduce_fuzz(self):
        def get_out_axis_size(a, b, axis):
            return None, (axis is None or a.ndim == 1)

        self.check_unary_fuzz(np.add.reduce, get_out_axis_size,
                              dtype=np.int16, count=500)

    def test_binary_ufunc_reduceat_fuzz(self):
        def get_out_axis_size(a, b, axis):
            if axis is None:
                if a.ndim == 1:
                    return a.size, False
                else:
                    return 'skip', False  # reduceat doesn't support this
            else:
                return a.shape[axis], False

        def do_reduceat(a, out, axis):
            if axis is None:
                size = len(a)
                step = size//len(out)
            else:
                size = a.shape[axis]
                step = a.shape[axis] // out.shape[axis]
            idx = np.arange(0, size, step)
            return np.add.reduceat(a, idx, out=out, axis=axis)

        self.check_unary_fuzz(do_reduceat, get_out_axis_size,
                              dtype=np.int16, count=500)

    def test_binary_ufunc_reduceat_manual(self):
        def check(ufunc, a, ind, out):
            c1 = ufunc.reduceat(a.copy(), ind.copy(), out=out.copy())
            c2 = ufunc.reduceat(a, ind, out=out)
            assert_array_equal(c1, c2)

        # Exactly same input/output arrays
        a = np.arange(10000, dtype=np.int16)
        check(np.add, a, a[::-1].copy(), a)

        # Overlap with index
        a = np.arange(10000, dtype=np.int16)
        check(np.add, a, a[::-1], a)

    def test_unary_gufunc_fuzz(self):
        shapes = [7, 13, 8, 21, 29, 32]
        gufunc = umath_tests.euclidean_pdist

        rng = np.random.RandomState(1234)

        for ndim in range(2, 6):
            x = rng.rand(*shapes[:ndim])

            it = iter_random_view_pairs(x, same_steps=False, equal_size=True)

            min_count = 500 // (ndim + 1)**2

            overlapping = 0
            while overlapping < min_count:
                a, b = next(it)

                if min(a.shape[-2:]) < 2 or min(b.shape[-2:]) < 2 or a.shape[-1] < 2:
                    continue

                # Ensure the shapes are so that euclidean_pdist is happy
                if b.shape[-1] > b.shape[-2]:
                    b = b[...,0,:]
                else:
                    b = b[...,:,0]

                n = a.shape[-2]
                p = n * (n - 1) // 2
                if p <= b.shape[-1] and p > 0:
                    b = b[...,:p]
                else:
                    n = max(2, int(np.sqrt(b.shape[-1]))//2)
                    p = n * (n - 1) // 2
                    a = a[...,:n,:]
                    b = b[...,:p]

                # Call
                if np.shares_memory(a, b):
                    overlapping += 1

                with np.errstate(over='ignore', invalid='ignore'):
                    assert_copy_equivalent(gufunc, [a], out=b)

    def test_ufunc_at_manual(self):
        def check(ufunc, a, ind, b=None):
            a0 = a.copy()
            if b is None:
                ufunc.at(a0, ind.copy())
                c1 = a0.copy()
                ufunc.at(a, ind)
                c2 = a.copy()
            else:
                ufunc.at(a0, ind.copy(), b.copy())
                c1 = a0.copy()
                ufunc.at(a, ind, b)
                c2 = a.copy()
            assert_array_equal(c1, c2)

        # Overlap with index
        a = np.arange(10000, dtype=np.int16)
        check(np.invert, a[::-1], a)

        # Overlap with second data array
        a = np.arange(100, dtype=np.int16)
        ind = np.arange(0, 100, 2, dtype=np.int16)
        check(np.add, a, ind, a[25:75])

    def test_unary_ufunc_1d_manual(self):
        # Exercise branches in PyArray_EQUIVALENTLY_ITERABLE

        def check(a, b):
            a_orig = a.copy()
            b_orig = b.copy()

            b0 = b.copy()
            c1 = ufunc(a, out=b0)
            c2 = ufunc(a, out=b)
            assert_array_equal(c1, c2)

            # Trigger "fancy ufunc loop" code path
            mask = view_element_first_byte(b).view(np.bool_)

            a[...] = a_orig
            b[...] = b_orig
            c1 = ufunc(a, out=b.copy(), where=mask.copy()).copy()

            a[...] = a_orig
            b[...] = b_orig
            c2 = ufunc(a, out=b, where=mask.copy()).copy()

            # Also, mask overlapping with output
            a[...] = a_orig
            b[...] = b_orig
            c3 = ufunc(a, out=b, where=mask).copy()

            assert_array_equal(c1, c2)
            assert_array_equal(c1, c3)

        dtypes = [np.int8, np.int16, np.int32, np.int64, np.float32,
                  np.float64, np.complex64, np.complex128]
        dtypes = [np.dtype(x) for x in dtypes]

        for dtype in dtypes:
            if np.issubdtype(dtype, np.integer):
                ufunc = np.invert
            else:
                ufunc = np.reciprocal

            n = 1000
            k = 10
            indices = [
                np.index_exp[:n],
                np.index_exp[k:k+n],
                np.index_exp[n-1::-1],
                np.index_exp[k+n-1:k-1:-1],
                np.index_exp[:2*n:2],
                np.index_exp[k:k+2*n:2],
                np.index_exp[2*n-1::-2],
                np.index_exp[k+2*n-1:k-1:-2],
            ]

            for xi, yi in itertools.product(indices, indices):
                v = np.arange(1, 1 + n*2 + k, dtype=dtype)
                x = v[xi]
                y = v[yi]

                with np.errstate(all='ignore'):
                    check(x, y)

                    # Scalar cases
                    check(x[:1], y)
                    check(x[-1:], y)
                    check(x[:1].reshape([]), y)
                    check(x[-1:].reshape([]), y)

    def test_unary_ufunc_where_same(self):
        # Check behavior at wheremask overlap
        ufunc = np.invert

        def check(a, out, mask):
            c1 = ufunc(a, out=out.copy(), where=mask.copy())
            c2 = ufunc(a, out=out, where=mask)
            assert_array_equal(c1, c2)

        # Check behavior with same input and output arrays
        x = np.arange(100).astype(np.bool_)
        check(x, x, x)
        check(x, x.copy(), x)
        check(x, x, x.copy())

    @dec.slow
    def test_binary_ufunc_1d_manual(self):
        ufunc = np.add

        def check(a, b, c):
            c0 = c.copy()
            c1 = ufunc(a, b, out=c0)
            c2 = ufunc(a, b, out=c)
            assert_array_equal(c1, c2)

        for dtype in [np.int8, np.int16, np.int32, np.int64,
                      np.float32, np.float64, np.complex64, np.complex128]:
            # Check different data dependency orders

            n = 1000
            k = 10

            indices = []
            for p in [1, 2]:
                indices.extend([
                    np.index_exp[:p*n:p],
                    np.index_exp[k:k+p*n:p],
                    np.index_exp[p*n-1::-p],
                    np.index_exp[k+p*n-1:k-1:-p],
                ])

            for x, y, z in itertools.product(indices, indices, indices):
                v = np.arange(6*n).astype(dtype)
                x = v[x]
                y = v[y]
                z = v[z]

                check(x, y, z)

                # Scalar cases
                check(x[:1], y, z)
                check(x[-1:], y, z)
                check(x[:1].reshape([]), y, z)
                check(x[-1:].reshape([]), y, z)
                check(x, y[:1], z)
                check(x, y[-1:], z)
                check(x, y[:1].reshape([]), z)
                check(x, y[-1:].reshape([]), z)

    def test_inplace_op_simple_manual(self):
        rng = np.random.RandomState(1234)
        x = rng.rand(200, 200)  # bigger than bufsize

        x += x.T
        assert_array_equal(x - x.T, 0)


if __name__ == "__main__":
    run_module_suite()