1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
UFunc API
=========
.. sectionauthor:: Travis E. Oliphant
.. index::
pair: ufunc; C-API
Constants
---------
.. c:var:: UFUNC_ERR_{HANDLER}
``{HANDLER}`` can be **IGNORE**, **WARN**, **RAISE**, or **CALL**
.. c:var:: UFUNC_{THING}_{ERR}
``{THING}`` can be **MASK**, **SHIFT**, or **FPE**, and ``{ERR}`` can
be **DIVIDEBYZERO**, **OVERFLOW**, **UNDERFLOW**, and **INVALID**.
.. c:var:: PyUFunc_{VALUE}
``{VALUE}`` can be **One** (1), **Zero** (0), or **None** (-1)
Macros
------
.. c:macro:: NPY_LOOP_BEGIN_THREADS
Used in universal function code to only release the Python GIL if
loop->obj is not true (*i.e.* this is not an OBJECT array
loop). Requires use of :c:macro:`NPY_BEGIN_THREADS_DEF` in variable
declaration area.
.. c:macro:: NPY_LOOP_END_THREADS
Used in universal function code to re-acquire the Python GIL if it
was released (because loop->obj was not true).
.. c:function:: UFUNC_CHECK_ERROR(loop)
A macro used internally to check for errors and goto fail if
found. This macro requires a fail label in the current code
block. The *loop* variable must have at least members (obj,
errormask, and errorobj). If *loop* ->obj is nonzero, then
:c:func:`PyErr_Occurred` () is called (meaning the GIL must be held). If
*loop* ->obj is zero, then if *loop* ->errormask is nonzero,
:c:func:`PyUFunc_checkfperr` is called with arguments *loop* ->errormask
and *loop* ->errobj. If the result of this check of the IEEE
floating point registers is true then the code redirects to the
fail label which must be defined.
.. c:function:: UFUNC_CHECK_STATUS(ret)
Deprecated: use npy_clear_floatstatus from npy_math.h instead.
A macro that expands to platform-dependent code. The *ret*
variable can be any integer. The :c:data:`UFUNC_FPE_{ERR}` bits are
set in *ret* according to the status of the corresponding error
flags of the floating point processor.
Functions
---------
.. c:function:: PyObject* PyUFunc_FromFuncAndData( \
PyUFuncGenericFunction* func, void** data, char* types, int ntypes, \
int nin, int nout, int identity, char* name, char* doc, int unused)
Create a new broadcasting universal function from required variables.
Each ufunc builds around the notion of an element-by-element
operation. Each ufunc object contains pointers to 1-d loops
implementing the basic functionality for each supported type.
.. note::
The *func*, *data*, *types*, *name*, and *doc* arguments are not
copied by :c:func:`PyUFunc_FromFuncAndData`. The caller must ensure
that the memory used by these arrays is not freed as long as the
ufunc object is alive.
:param func:
Must to an array of length *ntypes* containing
:c:type:`PyUFuncGenericFunction` items. These items are pointers to
functions that actually implement the underlying
(element-by-element) function :math:`N` times.
:param data:
Should be ``NULL`` or a pointer to an array of size *ntypes*
. This array may contain arbitrary extra-data to be passed to
the corresponding 1-d loop function in the func array.
:param types:
Must be of length (*nin* + *nout*) \* *ntypes*, and it
contains the data-types (built-in only) that the corresponding
function in the *func* array can deal with.
:param ntypes:
How many different data-type "signatures" the ufunc has implemented.
:param nin:
The number of inputs to this operation.
:param nout:
The number of outputs
:param name:
The name for the ufunc. Specifying a name of 'add' or
'multiply' enables a special behavior for integer-typed
reductions when no dtype is given. If the input type is an
integer (or boolean) data type smaller than the size of the int_
data type, it will be internally upcast to the int_ (or uint)
data type.
:param doc:
Allows passing in a documentation string to be stored with the
ufunc. The documentation string should not contain the name
of the function or the calling signature as that will be
dynamically determined from the object and available when
accessing the **__doc__** attribute of the ufunc.
:param unused:
Unused and present for backwards compatibility of the C-API.
.. c:function:: PyObject* PyUFunc_FromFuncAndDataAndSignature( \
PyUFuncGenericFunction* func, void** data, char* types, int ntypes, \
int nin, int nout, int identity, char* name, char* doc, int unused, char *signature)
This function is very similar to PyUFunc_FromFuncAndData above, but has
an extra *signature* argument, to define generalized universal functions.
Similarly to how ufuncs are built around an element-by-element operation,
gufuncs are around subarray-by-subarray operations, the signature defining
the subarrays to operate on.
:param signature:
The signature for the new gufunc. Setting it to NULL is equivalent
to calling PyUFunc_FromFuncAndData. A copy of the string is made,
so the passed in buffer can be freed.
.. c:function:: int PyUFunc_RegisterLoopForType( \
PyUFuncObject* ufunc, int usertype, PyUFuncGenericFunction function, \
int* arg_types, void* data)
This function allows the user to register a 1-d loop with an
already- created ufunc to be used whenever the ufunc is called
with any of its input arguments as the user-defined
data-type. This is needed in order to make ufuncs work with
built-in data-types. The data-type must have been previously
registered with the numpy system. The loop is passed in as
*function*. This loop can take arbitrary data which should be
passed in as *data*. The data-types the loop requires are passed
in as *arg_types* which must be a pointer to memory at least as
large as ufunc->nargs.
.. c:function:: int PyUFunc_RegisterLoopForDescr( \
PyUFuncObject* ufunc, PyArray_Descr* userdtype, \
PyUFuncGenericFunction function, PyArray_Descr** arg_dtypes, void* data)
This function behaves like PyUFunc_RegisterLoopForType above, except
that it allows the user to register a 1-d loop using PyArray_Descr
objects instead of dtype type num values. This allows a 1-d loop to be
registered for structured array data-dtypes and custom data-types
instead of scalar data-types.
.. c:function:: int PyUFunc_ReplaceLoopBySignature( \
PyUFuncObject* ufunc, PyUFuncGenericFunction newfunc, int* signature, \
PyUFuncGenericFunction* oldfunc)
Replace a 1-d loop matching the given *signature* in the
already-created *ufunc* with the new 1-d loop newfunc. Return the
old 1-d loop function in *oldfunc*. Return 0 on success and -1 on
failure. This function works only with built-in types (use
:c:func:`PyUFunc_RegisterLoopForType` for user-defined types). A
signature is an array of data-type numbers indicating the inputs
followed by the outputs assumed by the 1-d loop.
.. c:function:: int PyUFunc_GenericFunction( \
PyUFuncObject* self, PyObject* args, PyObject* kwds, PyArrayObject** mps)
A generic ufunc call. The ufunc is passed in as *self*, the arguments
to the ufunc as *args* and *kwds*. The *mps* argument is an array of
:c:type:`PyArrayObject` pointers whose values are discarded and which
receive the converted input arguments as well as the ufunc outputs
when success is returned. The user is responsible for managing this
array and receives a new reference for each array in *mps*. The total
number of arrays in *mps* is given by *self* ->nin + *self* ->nout.
Returns 0 on success, -1 on error.
.. c:function:: int PyUFunc_checkfperr(int errmask, PyObject* errobj)
A simple interface to the IEEE error-flag checking support. The
*errmask* argument is a mask of :c:data:`UFUNC_MASK_{ERR}` bitmasks
indicating which errors to check for (and how to check for
them). The *errobj* must be a Python tuple with two elements: a
string containing the name which will be used in any communication
of error and either a callable Python object (call-back function)
or :c:data:`Py_None`. The callable object will only be used if
:c:data:`UFUNC_ERR_CALL` is set as the desired error checking
method. This routine manages the GIL and is safe to call even
after releasing the GIL. If an error in the IEEE-compatibile
hardware is determined a -1 is returned, otherwise a 0 is
returned.
.. c:function:: void PyUFunc_clearfperr()
Clear the IEEE error flags.
.. c:function:: void PyUFunc_GetPyValues( \
char* name, int* bufsize, int* errmask, PyObject** errobj)
Get the Python values used for ufunc processing from the
thread-local storage area unless the defaults have been set in
which case the name lookup is bypassed. The name is placed as a
string in the first element of *\*errobj*. The second element is
the looked-up function to call on error callback. The value of the
looked-up buffer-size to use is passed into *bufsize*, and the
value of the error mask is placed into *errmask*.
Generic functions
-----------------
At the core of every ufunc is a collection of type-specific functions
that defines the basic functionality for each of the supported types.
These functions must evaluate the underlying function :math:`N\geq1`
times. Extra-data may be passed in that may be used during the
calculation. This feature allows some general functions to be used as
these basic looping functions. The general function has all the code
needed to point variables to the right place and set up a function
call. The general function assumes that the actual function to call is
passed in as the extra data and calls it with the correct values. All
of these functions are suitable for placing directly in the array of
functions stored in the functions member of the PyUFuncObject
structure.
.. c:function:: void PyUFunc_f_f_As_d_d( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_d_d( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_f_f( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_g_g( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_F_F_As_D_D( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_F_F( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_D_D( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_G_G( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_e_e( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_e_e_As_f_f( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_e_e_As_d_d( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
Type specific, core 1-d functions for ufuncs where each
calculation is obtained by calling a function taking one input
argument and returning one output. This function is passed in
``func``. The letters correspond to dtypechar's of the supported
data types ( ``e`` - half, ``f`` - float, ``d`` - double,
``g`` - long double, ``F`` - cfloat, ``D`` - cdouble,
``G`` - clongdouble). The argument *func* must support the same
signature. The _As_X_X variants assume ndarray's of one data type
but cast the values to use an underlying function that takes a
different data type. Thus, :c:func:`PyUFunc_f_f_As_d_d` uses
ndarrays of data type :c:data:`NPY_FLOAT` but calls out to a
C-function that takes double and returns double.
.. c:function:: void PyUFunc_ff_f_As_dd_d( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_ff_f( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_dd_d( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_gg_g( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_FF_F_As_DD_D( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_DD_D( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_FF_F( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_GG_G( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_ee_e( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_ee_e_As_ff_f( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_ee_e_As_dd_d( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
Type specific, core 1-d functions for ufuncs where each
calculation is obtained by calling a function taking two input
arguments and returning one output. The underlying function to
call is passed in as *func*. The letters correspond to
dtypechar's of the specific data type supported by the
general-purpose function. The argument ``func`` must support the
corresponding signature. The ``_As_XX_X`` variants assume ndarrays
of one data type but cast the values at each iteration of the loop
to use the underlying function that takes a different data type.
.. c:function:: void PyUFunc_O_O( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
.. c:function:: void PyUFunc_OO_O( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
One-input, one-output, and two-input, one-output core 1-d functions
for the :c:data:`NPY_OBJECT` data type. These functions handle reference
count issues and return early on error. The actual function to call is
*func* and it must accept calls with the signature ``(PyObject*)
(PyObject*)`` for :c:func:`PyUFunc_O_O` or ``(PyObject*)(PyObject *,
PyObject *)`` for :c:func:`PyUFunc_OO_O`.
.. c:function:: void PyUFunc_O_O_method( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
This general purpose 1-d core function assumes that *func* is a string
representing a method of the input object. For each
iteration of the loop, the Python object is extracted from the array
and its *func* method is called returning the result to the output array.
.. c:function:: void PyUFunc_OO_O_method( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
This general purpose 1-d core function assumes that *func* is a
string representing a method of the input object that takes one
argument. The first argument in *args* is the method whose function is
called, the second argument in *args* is the argument passed to the
function. The output of the function is stored in the third entry
of *args*.
.. c:function:: void PyUFunc_On_Om( \
char** args, npy_intp* dimensions, npy_intp* steps, void* func)
This is the 1-d core function used by the dynamic ufuncs created
by umath.frompyfunc(function, nin, nout). In this case *func* is a
pointer to a :c:type:`PyUFunc_PyFuncData` structure which has definition
.. c:type:: PyUFunc_PyFuncData
.. code-block:: c
typedef struct {
int nin;
int nout;
PyObject *callable;
} PyUFunc_PyFuncData;
At each iteration of the loop, the *nin* input objects are extracted
from their object arrays and placed into an argument tuple, the Python
*callable* is called with the input arguments, and the nout
outputs are placed into their object arrays.
Importing the API
-----------------
.. c:var:: PY_UFUNC_UNIQUE_SYMBOL
.. c:var:: NO_IMPORT_UFUNC
.. c:function:: void import_ufunc(void)
These are the constants and functions for accessing the ufunc
C-API from extension modules in precisely the same way as the
array C-API can be accessed. The ``import_ufunc`` () function must
always be called (in the initialization subroutine of the
extension module). If your extension module is in one file then
that is all that is required. The other two constants are useful
if your extension module makes use of multiple files. In that
case, define :c:data:`PY_UFUNC_UNIQUE_SYMBOL` to something unique to
your code and then in source files that do not contain the module
initialization function but still need access to the UFUNC API,
define :c:data:`PY_UFUNC_UNIQUE_SYMBOL` to the same name used previously
and also define :c:data:`NO_IMPORT_UFUNC`.
The C-API is actually an array of function pointers. This array is
created (and pointed to by a global variable) by import_ufunc. The
global variable is either statically defined or allowed to be seen
by other files depending on the state of
:c:data:`PY_UFUNC_UNIQUE_SYMBOL` and :c:data:`NO_IMPORT_UFUNC`.
.. index::
pair: ufunc; C-API
|