blob: f1d024565747ab4b37c2f5c313a3078e5b40521d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
# <img alt="NumPy" src="https://cdn.rawgit.com/numpy/numpy/master/branding/icons/numpylogo.svg" height="60">
[![Travis](https://img.shields.io/travis/numpy/numpy/master.svg?label=Travis%20CI)](
https://travis-ci.org/numpy/numpy)
[![AppVeyor](https://img.shields.io/appveyor/ci/charris/numpy/master.svg?label=AppVeyor)](
https://ci.appveyor.com/project/charris/numpy)
[![Azure](https://dev.azure.com/numpy/numpy/_apis/build/status/azure-pipeline%20numpy.numpy)](
https://dev.azure.com/numpy/numpy/_build/latest?definitionId=5)
[![codecov](https://codecov.io/gh/numpy/numpy/branch/master/graph/badge.svg)](
https://codecov.io/gh/numpy/numpy)
NumPy is the fundamental package needed for scientific computing with Python.
- **Website:** https://www.numpy.org
- **Documentation:** http://docs.scipy.org/
- **Mailing list:** https://mail.python.org/mailman/listinfo/numpy-discussion
- **Source code:** https://github.com/numpy/numpy
- **Contributing:** https://www.numpy.org/devdocs/dev/index.html
- **Bug reports:** https://github.com/numpy/numpy/issues
- **Report a security vulnerability:** https://tidelift.com/docs/security
It provides:
- a powerful N-dimensional array object
- sophisticated (broadcasting) functions
- tools for integrating C/C++ and Fortran code
- useful linear algebra, Fourier transform, and random number capabilities
Testing:
- NumPy versions ≥ 1.15 require `pytest`
- NumPy versions < 1.15 require `nose`
Tests can then be run after installation with:
python -c 'import numpy; numpy.test()'
[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)
|