diff options
author | Oscar Villellas <oscar.villellas@continuum.io> | 2017-01-03 22:36:55 +0100 |
---|---|---|
committer | Oscar Villellas <oscar.villellas@continuum.io> | 2017-01-03 22:36:55 +0100 |
commit | c85d199df3da21d5f92b75424c2b3c84327528f0 (patch) | |
tree | 55f6d6888a066403c8dcdcf63ee835ab3e918b42 /numpy/random | |
parent | 6d7f14f60e12d200b02fd1f41d2315a5167cc859 (diff) | |
download | python-numpy-c85d199df3da21d5f92b75424c2b3c84327528f0.tar.gz python-numpy-c85d199df3da21d5f92b75424c2b3c84327528f0.tar.bz2 python-numpy-c85d199df3da21d5f92b75424c2b3c84327528f0.zip |
single too argument + mention in release docs.
Diffstat (limited to 'numpy/random')
-rw-r--r-- | numpy/random/mtrand/mtrand.pyx | 14 |
1 files changed, 5 insertions, 9 deletions
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx index 982efe741..bf3a385a9 100644 --- a/numpy/random/mtrand/mtrand.pyx +++ b/numpy/random/mtrand/mtrand.pyx @@ -4356,9 +4356,9 @@ cdef class RandomState: # Multivariate distributions: def multivariate_normal(self, mean, cov, size=None, check_valid='warn', - rtol=1e-05, atol=1e-8): + tol=1e-8): """ - multivariate_normal(mean, cov[, size, check_valid, rtol, atol]) + multivariate_normal(mean, cov[, size, check_valid, tol]) Draw random samples from a multivariate normal distribution. @@ -4383,12 +4383,8 @@ cdef class RandomState: If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. - rtol : float, optional - Relative tolerance to use when checking the singular values in - covariance matrix. - atol : float, optional - Absolute tolerance to use when checking the singular values in - covariance matrix + tol : float, optional + Tolerance when checking the singular values in covariance matrix. Returns ------- @@ -4507,7 +4503,7 @@ cdef class RandomState: if check_valid != 'warn' and check_valid != 'raise': raise ValueError("check_valid must equal 'warn', 'raise', or 'ignore'") - psd = np.allclose(np.dot(v.T * s, v), cov, rtol=rtol, atol=atol) + psd = np.allclose(np.dot(v.T * s, v), cov, rtol=tol, atol=tol) if not psd: if check_valid == 'warn': warnings.warn("covariance is not positive-semidefinite.", |