summaryrefslogtreecommitdiff
path: root/numpy/random
diff options
context:
space:
mode:
authorOscar Villellas <oscar.villellas@continuum.io>2017-01-03 22:36:55 +0100
committerOscar Villellas <oscar.villellas@continuum.io>2017-01-03 22:36:55 +0100
commitc85d199df3da21d5f92b75424c2b3c84327528f0 (patch)
tree55f6d6888a066403c8dcdcf63ee835ab3e918b42 /numpy/random
parent6d7f14f60e12d200b02fd1f41d2315a5167cc859 (diff)
downloadpython-numpy-c85d199df3da21d5f92b75424c2b3c84327528f0.tar.gz
python-numpy-c85d199df3da21d5f92b75424c2b3c84327528f0.tar.bz2
python-numpy-c85d199df3da21d5f92b75424c2b3c84327528f0.zip
single too argument + mention in release docs.
Diffstat (limited to 'numpy/random')
-rw-r--r--numpy/random/mtrand/mtrand.pyx14
1 files changed, 5 insertions, 9 deletions
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx
index 982efe741..bf3a385a9 100644
--- a/numpy/random/mtrand/mtrand.pyx
+++ b/numpy/random/mtrand/mtrand.pyx
@@ -4356,9 +4356,9 @@ cdef class RandomState:
# Multivariate distributions:
def multivariate_normal(self, mean, cov, size=None, check_valid='warn',
- rtol=1e-05, atol=1e-8):
+ tol=1e-8):
"""
- multivariate_normal(mean, cov[, size, check_valid, rtol, atol])
+ multivariate_normal(mean, cov[, size, check_valid, tol])
Draw random samples from a multivariate normal distribution.
@@ -4383,12 +4383,8 @@ cdef class RandomState:
If no shape is specified, a single (`N`-D) sample is returned.
check_valid : { 'warn', 'raise', 'ignore' }, optional
Behavior when the covariance matrix is not positive semidefinite.
- rtol : float, optional
- Relative tolerance to use when checking the singular values in
- covariance matrix.
- atol : float, optional
- Absolute tolerance to use when checking the singular values in
- covariance matrix
+ tol : float, optional
+ Tolerance when checking the singular values in covariance matrix.
Returns
-------
@@ -4507,7 +4503,7 @@ cdef class RandomState:
if check_valid != 'warn' and check_valid != 'raise':
raise ValueError("check_valid must equal 'warn', 'raise', or 'ignore'")
- psd = np.allclose(np.dot(v.T * s, v), cov, rtol=rtol, atol=atol)
+ psd = np.allclose(np.dot(v.T * s, v), cov, rtol=tol, atol=tol)
if not psd:
if check_valid == 'warn':
warnings.warn("covariance is not positive-semidefinite.",