summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2017-03-08 11:07:06 +0000
committerGitHub <noreply@github.com>2017-03-08 11:07:06 +0000
commit485b099cd4b82d65dc38cb2b28c7119f003c76c4 (patch)
tree809cbc5926d6c38aa87e42f980a4e9b5568901c0 /numpy/lib
parent6a3edf3210b439a4d1a51acb4e01bac017697ee6 (diff)
parent1588ae39ffb51ea916f03510671aab711fdfb568 (diff)
downloadpython-numpy-485b099cd4b82d65dc38cb2b28c7119f003c76c4.tar.gz
python-numpy-485b099cd4b82d65dc38cb2b28c7119f003c76c4.tar.bz2
python-numpy-485b099cd4b82d65dc38cb2b28c7119f003c76c4.zip
Merge pull request #8750 from warut-vijit/master
BUG: Fix np.average for object arrays
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/function_base.py2
-rw-r--r--numpy/lib/tests/test_function_base.py7
2 files changed, 8 insertions, 1 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index c54512c21..0903790bd 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -1135,7 +1135,7 @@ def average(a, axis=None, weights=None, returned=False):
wgt = wgt.swapaxes(-1, axis)
scl = wgt.sum(axis=axis, dtype=result_dtype)
- if (scl == 0.0).any():
+ if np.any(scl == 0.0):
raise ZeroDivisionError(
"Weights sum to zero, can't be normalized")
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 4fb0dba51..188c1c2ea 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -3,6 +3,7 @@ from __future__ import division, absolute_import, print_function
import operator
import warnings
import sys
+import decimal
import numpy as np
from numpy.testing import (
@@ -341,6 +342,12 @@ class TestAverage(TestCase):
w = np.array([[1,2],[3,4]], dtype=wt)
assert_equal(np.average(a, weights=w).dtype, np.dtype(rt))
+ def test_object_dtype(self):
+ a = np.array([decimal.Decimal(x) for x in range(10)])
+ w = np.array([decimal.Decimal(1) for _ in range(10)])
+ w /= w.sum()
+ assert_almost_equal(a.mean(0), average(a, weights=w))
+
class TestSelect(TestCase):
choices = [np.array([1, 2, 3]),
np.array([4, 5, 6]),