1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/* Test Grid::is_disjoint_from().
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include "ppl_test.hh"
using namespace Parma_Polyhedra_Library::IO_Operators;
namespace {
// Grid of points and empty grid.
bool
test01() {
Variable A(0);
Grid_Generator_System gs;
gs.insert(grid_point(A));
Grid gr1(gs);
Grid gr2(1, EMPTY);
bool ok = (gr1.is_disjoint_from(gr2));
print_congruences(gr1, "*** gr1 ***");
print_congruences(gr2, "*** gr2 ***");
return ok;
}
// Empty grid and grid of points.
bool
test02() {
Variable B(1);
Grid gr1(2, EMPTY);
Grid_Generator_System gs;
gs.insert(grid_point());
gs.insert(grid_point(B));
Grid gr2(gs);
bool ok = (gr1.is_disjoint_from(gr2));
print_congruences(gr1, "*** gr1 ***");
print_congruences(gr2, "*** gr2 ***");
return ok;
}
// Both empty.
bool
test03() {
Grid gr1(4, EMPTY);
Grid gr2(4, EMPTY);
bool ok = (gr1.is_disjoint_from(gr2));
print_congruences(gr1, "*** gr1 ***");
print_congruences(gr2, "*** gr2 ***");
return ok;
}
// Zero dimension universes.
bool
test04() {
Grid gr1(0);
Grid gr2(0);
bool ok = (!gr1.is_disjoint_from(gr2));
print_congruences(gr1, "*** gr1 ***");
print_congruences(gr2, "*** gr2 ***");
return ok;
}
// Grid and itself.
bool
test05() {
Variable A(0);
Variable B(1);
Variable C(2);
Grid gr(3);
gr.add_congruence(A - B %= 0);
gr.add_congruence(C %= 0);
bool ok = (!gr.is_disjoint_from(gr));
print_congruences(gr, "*** gr ***");
return ok;
}
// Two grids which alternate AB planes along C.
bool
test06() {
Variable A(0);
Variable B(1);
Variable C(2);
Grid gr1(3);
gr1.add_congruence(A - B %= 0);
gr1.add_congruence((C %= 0) / 2);
Grid gr2(3, EMPTY);
gr2.add_grid_generator(grid_point(C));
gr2.add_grid_generator(grid_line(A + B));
gr2.add_grid_generator(grid_point(C + B));
gr2.add_grid_generator(grid_point(3*C));
bool ok = (gr1.is_disjoint_from(gr2));
print_congruences(gr1, "*** gr1 ***");
print_congruences(gr2, "*** gr2 ***");
return ok;
}
// A sequence of points and a plane.
bool
test07() {
Variable A(0);
Variable B(1);
Variable C(2);
Grid gr1(3, EMPTY);
gr1.add_grid_generator(grid_point(A + B + C));
gr1.add_grid_generator(grid_point(3*A + 3*B + 3*C));
Grid gr2(3);
gr2.add_congruence(A - B %= 0);
gr2.add_constraint(C == 0);
bool ok = (gr1.is_disjoint_from(gr2));
print_congruences(gr1, "*** gr1 ***");
print_congruences(gr2, "*** gr2 ***");
return ok;
}
// A line and a plane.
bool
test08() {
Variable A(0);
Variable B(1);
Variable C(2);
Grid gr1(3, EMPTY);
gr1.add_grid_generator(grid_point(A + B + C));
gr1.add_grid_generator(grid_line(3*A + 3*B + 3*C));
Grid gr2(3);
gr2.add_congruence(A - B %= 0);
gr2.add_constraint(C == 0);
bool ok = (!gr1.is_disjoint_from(gr2));
print_congruences(gr1, "*** gr1 ***");
print_congruences(gr2, "*** gr2 ***");
return ok;
}
// CHINA contains example that showed an error in cgs::is_included_in.
bool
test09() {
Variable A(0);
Grid gr1(1, EMPTY);
gr1.add_grid_generator(grid_point());
gr1.minimized_grid_generators();
Grid gr2(1, EMPTY);
gr2.add_grid_generator(grid_point(A));
gr2.minimized_grid_generators();
bool ok = (gr1.is_disjoint_from(gr2));
print_congruences(gr2, "*** gr2 ***");
print_congruences(gr1, "*** gr1.is_disjoint_from(gr2) ***");
return ok;
}
// Space dimension exception.
bool
test10() {
Grid gr1(1, EMPTY);
gr1.add_grid_generator(grid_point());
Grid gr2(19, EMPTY);
try {
gr1.is_disjoint_from(gr2);
}
catch (const std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl;
return true;
}
catch (...) {
}
return false;
}
// Both empty and both not in minimal form.
bool
test11() {
Variable A(0);
Grid gr1(1);
gr1.add_congruence((A %= 1) / 2);
gr1.add_congruence((A %= 0) / 2);
Grid gr2(1);
gr2.add_congruence((A %= 1) / 2);
gr2.add_congruence((A %= 0) / 2);
bool ok = (gr1.is_disjoint_from(gr2));
print_congruences(gr1, "*** gr1 ***");
print_congruences(gr2, "*** gr2 ***");
return ok;
}
} // namespace
BEGIN_MAIN
DO_TEST(test01);
DO_TEST(test02);
DO_TEST(test03);
DO_TEST(test04);
DO_TEST(test05);
DO_TEST(test06);
DO_TEST(test07);
DO_TEST(test08);
DO_TEST(test09);
DO_TEST(test10);
DO_TEST(test11);
END_MAIN
|