1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/* Generator_System class declaration.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_Generator_System_defs_hh
#define PPL_Generator_System_defs_hh 1
#include "Generator_System.types.hh"
#include "Grid_Generator_System.types.hh"
#include "Linear_Expression.types.hh"
#include "Linear_System.defs.hh"
#include "Generator.types.hh"
#include "Constraint.types.hh"
#include "Polyhedron.types.hh"
#include "Poly_Con_Relation.defs.hh"
#include <iosfwd>
#include <cstddef>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*!
\relates Parma_Polyhedra_Library::Generator_System
Writes <CODE>false</CODE> if \p gs is empty. Otherwise, writes on
\p s the generators of \p gs, all in one row and separated by ", ".
*/
std::ostream& operator<<(std::ostream& s, const Generator_System& gs);
} // namespace IO_Operators
// Put it in the namespace here to declare it friend later.
/*! \relates Polyhedron */
bool operator==(const Polyhedron& x, const Polyhedron& y);
} // namespace Parma_Polyhedra_Library
namespace std {
//! Specializes <CODE>std::swap</CODE>.
/*! \relates Parma_Polyhedra_Library::Generator_System */
void swap(Parma_Polyhedra_Library::Generator_System& x,
Parma_Polyhedra_Library::Generator_System& y);
} // namespace std
//! A system of generators.
/*! \ingroup PPL_CXX_interface
An object of the class Generator_System is a system of generators,
i.e., a multiset of objects of the class Generator
(lines, rays, points and closure points).
When inserting generators in a system, space dimensions are automatically
adjusted so that all the generators in the system are defined
on the same vector space.
A system of generators which is meant to define a non-empty
polyhedron must include at least one point: the reason is that
lines, rays and closure points need a supporting point
(lines and rays only specify directions while closure points only
specify points in the topological closure of the NNC polyhedron).
\par
In all the examples it is assumed that variables
<CODE>x</CODE> and <CODE>y</CODE> are defined as follows:
\code
Variable x(0);
Variable y(1);
\endcode
\par Example 1
The following code defines the line having the same direction
as the \f$x\f$ axis (i.e., the first Cartesian axis)
in \f$\Rset^2\f$:
\code
Generator_System gs;
gs.insert(line(x + 0*y));
\endcode
As said above, this system of generators corresponds to
an empty polyhedron, because the line has no supporting point.
To define a system of generators that does correspond to
the \f$x\f$ axis, we can add the following code which
inserts the origin of the space as a point:
\code
gs.insert(point(0*x + 0*y));
\endcode
Since space dimensions are automatically adjusted, the following
code obtains the same effect:
\code
gs.insert(point(0*x));
\endcode
In contrast, if we had added the following code, we would have
defined a line parallel to the \f$x\f$ axis through
the point \f$(0, 1)^\transpose \in \Rset^2\f$.
\code
gs.insert(point(0*x + 1*y));
\endcode
\par Example 2
The following code builds a ray having the same direction as
the positive part of the \f$x\f$ axis in \f$\Rset^2\f$:
\code
Generator_System gs;
gs.insert(ray(x + 0*y));
\endcode
To define a system of generators indeed corresponding to the set
\f[
\bigl\{\,
(x, 0)^\transpose \in \Rset^2
\bigm|
x \geq 0
\,\bigr\},
\f]
one just has to add the origin:
\code
gs.insert(point(0*x + 0*y));
\endcode
\par Example 3
The following code builds a system of generators having four points
and corresponding to a square in \f$\Rset^2\f$
(the same as Example 1 for the system of constraints):
\code
Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
\endcode
\par Example 4
By using closure points, we can define the \e kernel
(i.e., the largest open set included in a given set)
of the square defined in the previous example.
Note that a supporting point is needed and, for that purpose,
any inner point could be considered.
\code
Generator_System gs;
gs.insert(point(x + y));
gs.insert(closure_point(0*x + 0*y));
gs.insert(closure_point(0*x + 3*y));
gs.insert(closure_point(3*x + 0*y));
gs.insert(closure_point(3*x + 3*y));
\endcode
\par Example 5
The following code builds a system of generators having two points
and a ray, corresponding to a half-strip in \f$\Rset^2\f$
(the same as Example 2 for the system of constraints):
\code
Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 1*y));
gs.insert(ray(x - y));
\endcode
\note
After inserting a multiset of generators in a generator system,
there are no guarantees that an <EM>exact</EM> copy of them
can be retrieved:
in general, only an <EM>equivalent</EM> generator system
will be available, where original generators may have been
reordered, removed (if they are duplicate or redundant), etc.
*/
class Parma_Polyhedra_Library::Generator_System : protected Linear_System {
public:
//! Default constructor: builds an empty system of generators.
Generator_System();
//! Builds the singleton system containing only generator \p g.
explicit Generator_System(const Generator& g);
//! Ordinary copy constructor.
Generator_System(const Generator_System& gs);
//! Destructor.
~Generator_System();
//! Assignment operator.
Generator_System& operator=(const Generator_System& y);
//! Returns the maximum space dimension a Generator_System can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Removes all the generators from the generator system
and sets its space dimension to 0.
*/
void clear();
/*! \brief
Inserts in \p *this a copy of the generator \p g,
increasing the number of space dimensions if needed.
*/
void insert(const Generator& g);
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
/*! \brief
Returns the singleton system containing only Generator::zero_dim_point().
*/
static const Generator_System& zero_dim_univ();
//! An iterator over a system of generators
/*! \ingroup PPL_CXX_interface
A const_iterator is used to provide read-only access
to each generator contained in an object of Generator_System.
\par Example
The following code prints the system of generators
of the polyhedron <CODE>ph</CODE>:
\code
const Generator_System& gs = ph.generators();
for (Generator_System::const_iterator i = gs.begin(),
gs_end = gs.end(); i != gs_end; ++i)
cout << *i << endl;
\endcode
The same effect can be obtained more concisely by using
more features of the STL:
\code
const Generator_System& gs = ph.generators();
copy(gs.begin(), gs.end(), ostream_iterator<Generator>(cout, "\n"));
\endcode
*/
class const_iterator
: public std::iterator<std::forward_iterator_tag,
Generator,
std::ptrdiff_t,
const Generator*,
const Generator&> {
public:
//! Default constructor.
const_iterator();
//! Ordinary copy constructor.
const_iterator(const const_iterator& y);
//! Destructor.
~const_iterator();
//! Assignment operator.
const_iterator& operator=(const const_iterator& y);
//! Dereference operator.
const Generator& operator*() const;
//! Indirect member selector.
const Generator* operator->() const;
//! Prefix increment operator.
const_iterator& operator++();
//! Postfix increment operator.
const_iterator operator++(int);
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are identical.
*/
bool operator==(const const_iterator& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this and \p y are different.
*/
bool operator!=(const const_iterator& y) const;
private:
friend class Generator_System;
//! The const iterator over the Linear_System.
Linear_System::const_iterator i;
//! A const pointer to the Linear_System.
const Linear_System* gsp;
//! Constructor.
const_iterator(const Linear_System::const_iterator& iter,
const Generator_System& gsys);
/*! \brief
\p *this skips to the next generator, skipping those
closure points that are immediately followed by a matching point.
*/
void skip_forward();
};
//! Returns <CODE>true</CODE> if and only if \p *this has no generators.
bool empty() const;
/*! \brief
Returns the const_iterator pointing to the first generator,
if \p *this is not empty;
otherwise, returns the past-the-end const_iterator.
*/
const_iterator begin() const;
//! Returns the past-the-end const_iterator.
const_iterator end() const;
//! Checks if all the invariants are satisfied.
/*!
Returns <CODE>true</CODE> if and only if \p *this is a valid
Linear_System and each row in the system is a valid Generator.
*/
bool OK() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
Resizes the matrix of generators using the numbers of rows and columns
read from \p s, then initializes the coordinates of each generator
and its type reading the contents from \p s.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
//! Swaps \p *this with \p y.
void swap(Generator_System& y);
private:
/*! \brief
Holds (between class initialization and finalization) a pointer to
the singleton system containing only Generator::zero_dim_point().
*/
static const Generator_System* zero_dim_univ_p;
friend class const_iterator;
friend class Parma_Polyhedra_Library::Polyhedron;
friend class Parma_Polyhedra_Library::Grid_Generator_System;
friend bool operator==(const Polyhedron& x, const Polyhedron& y);
//! Builds an empty system of generators having the specified topology.
explicit Generator_System(Topology topol);
/*! \brief
Builds a system of \p n_rows rays/points on a \p n_columns - 1
dimensional space (including the \f$\epsilon\f$ dimension, if
\p topol is <CODE>NOT_NECESSARILY_CLOSED</CODE>).
*/
Generator_System(Topology topol,
dimension_type n_rows, dimension_type n_columns);
/*! \brief
Adjusts \p *this so that it matches the topology and
the number of space dimensions given as parameters
(adding or removing columns if needed).
Returns <CODE>false</CODE> if and only if \p topol is
equal to <CODE>NECESSARILY_CLOSED</CODE> and \p *this
contains closure points.
*/
bool adjust_topology_and_space_dimension(Topology topol,
dimension_type num_dimensions);
/*! \brief
For each unmatched closure point in \p *this, adds the
corresponding point.
It is assumed that the topology of \p *this
is <CODE>NOT_NECESSARILY_CLOSED</CODE>.
*/
void add_corresponding_points();
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains one or more points.
*/
bool has_points() const;
/*! \brief
For each unmatched point in \p *this, adds the corresponding
closure point.
It is assumed that the topology of \p *this
is <CODE>NOT_NECESSARILY_CLOSED</CODE>.
*/
void add_corresponding_closure_points();
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains one or more closure points.
Note: the check for the presence of closure points is
done under the point of view of the user. Namely, we scan
the generator system using high-level iterators, so that
closure points that are matching the corresponding points
will be disregarded.
*/
bool has_closure_points() const;
//! Returns the \p k- th generator of the system.
Generator& operator[](dimension_type k);
//! Returns a constant reference to the \p k- th generator of the system.
const Generator& operator[](dimension_type k) const;
/*! \brief
Returns the relations holding between the generator system
and the constraint \p c.
*/
Parma_Polyhedra_Library::Poly_Con_Relation
relation_with(const Constraint& c) const;
//! Returns <CODE>true</CODE> if all the generators satisfy \p c.
bool satisfied_by_all_generators(const Constraint& c) const;
//! Returns <CODE>true</CODE> if all the generators satisfy \p c.
/*!
It is assumed that <CODE>c.is_necessarily_closed()</CODE> holds.
*/
bool satisfied_by_all_generators_C(const Constraint& c) const;
//! Returns <CODE>true</CODE> if all the generators satisfy \p c.
/*!
It is assumed that <CODE>c.is_necessarily_closed()</CODE> does not hold.
*/
bool satisfied_by_all_generators_NNC(const Constraint& c) const;
//! Assigns to a given variable an affine expression.
/*!
\param v
Index of the column to which the affine transformation is assigned;
\param expr
The numerator of the affine transformation:
\f$\sum_{i = 0}^{n - 1} a_i x_i + b\f$;
\param denominator
The denominator of the affine transformation.
We want to allow affine transformations (see the Introduction) having
any rational coefficients. Since the coefficients of the
constraints are integers we must also provide an integer \p denominator
that will be used as denominator of the affine transformation.
The denominator is required to be a positive integer.
The affine transformation assigns to each element of \p v -th
column the follow expression:
\f[
\frac{\sum_{i = 0}^{n - 1} a_i x_i + b}
{\mathrm{denominator}}.
\f]
\p expr is a constant parameter and unaltered by this computation.
*/
void affine_image(dimension_type v,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator);
//! Returns the number of lines of the system.
dimension_type num_lines() const;
//! Returns the number of rays of the system.
dimension_type num_rays() const;
//! Removes all the invalid lines and rays.
/*!
The invalid lines and rays are those with all
the homogeneous terms set to zero.
*/
void remove_invalid_lines_and_rays();
/*! \brief
Applies Gaussian elimination and back-substitution so as
to provide a partial simplification of the system of generators.
It is assumed that the system has no pending generators.
*/
void simplify();
/*! \brief
Inserts in \p *this a copy of the generator \p g,
increasing the number of space dimensions if needed.
It is a pending generator.
*/
void insert_pending(const Generator& g);
};
// Generator_System.inlines.hh is not included here on purpose.
#endif // !defined(PPL_Generator_System_defs_hh)
|