summaryrefslogtreecommitdiff
path: root/reference/ctrmmf.f
blob: d65bf4484ef50403b86a72a10a9e96eef088e934 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
      SUBROUTINE CTRMMF ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
     $                   B, LDB )
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO, TRANSA, DIAG
      INTEGER            M, N, LDA, LDB
      COMPLEX            ALPHA
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  CTRMM  performs one of the matrix-matrix operations
*
*     B := alpha*op( A )*B,   or   B := alpha*B*op( A )
*
*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*
*     op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE specifies whether  op( A ) multiplies B from
*           the left or right as follows:
*
*              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
*
*              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix A is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n'   op( A ) = A.
*
*              TRANSA = 'T' or 't'   op( A ) = A'.
*
*              TRANSA = 'C' or 'c'   op( A ) = conjg( A' ).
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit triangular
*           as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of B. M must be at
*           least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of B.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX         .
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*           zero then  A is not referenced and  B need not be set before
*           entry.
*           Unchanged on exit.
*
*  A      - COMPLEX          array of DIMENSION ( LDA, k ), where k is m
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*           upper triangular part of the array  A must contain the upper
*           triangular matrix  and the strictly lower triangular part of
*           A is not referenced.
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*           lower triangular part of the array  A must contain the lower
*           triangular matrix  and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*           A  are not referenced either,  but are assumed to be  unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*           then LDA must be at least max( 1, n ).
*           Unchanged on exit.
*
*  B      - COMPLEX          array of DIMENSION ( LDB, n ).
*           Before entry,  the leading  m by n part of the array  B must
*           contain the matrix  B,  and  on exit  is overwritten  by the
*           transformed matrix.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MAX
*     .. Local Scalars ..
      LOGICAL            LSIDE, NOCONJ, NOUNIT, UPPER
      INTEGER            I, INFO, J, K, NROWA
      COMPLEX            TEMP
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER        ( ONE  = ( 1.0D+0, 0.0D+0 ) )
      COMPLEX            ZERO
      PARAMETER        ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      LSIDE  = LSAME( SIDE  , 'L' )
      IF( LSIDE )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      NOCONJ = LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'T' )
      NOUNIT = LSAME( DIAG  , 'N' )
      UPPER  = LSAME( UPLO  , 'U' )
*
      INFO   = 0
      IF(      ( .NOT.LSIDE                ).AND.
     $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER                ).AND.
     $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN
         INFO = 2
      ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'R' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN
         INFO = 3
      ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.
     $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN
         INFO = 4
      ELSE IF( M  .LT.0               )THEN
         INFO = 5
      ELSE IF( N  .LT.0               )THEN
         INFO = 6
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 9
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 11
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'CTRMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         DO 20, J = 1, N
            DO 10, I = 1, M
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSIDE )THEN
         IF( LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'R' ))THEN
*
*           Form  B := alpha*A*B.
*
            IF( UPPER )THEN
               DO 50, J = 1, N
                  DO 40, K = 1, M
                     IF( B( K, J ).NE.ZERO )THEN
                        TEMP = ALPHA*B( K, J )
                        IF (NOCONJ) THEN
                        DO 30, I = 1, K - 1
                           B( I, J ) = B( I, J ) + TEMP*A( I, K )
   30                   CONTINUE
                        IF( NOUNIT )
     $                     TEMP = TEMP*A( K, K )
                        B( K, J ) = TEMP
                        ELSE
                        DO 35, I = 1, K - 1
                         B( I, J ) = B( I, J ) + TEMP*CONJG(A( I, K ))
   35                 CONTINUE
                        IF( NOUNIT )
     $                     TEMP = TEMP*CONJG(A( K, K ))
                        B( K, J ) = TEMP
                        ENDIF
                     END IF
   40             CONTINUE
   50          CONTINUE
            ELSE
               DO 80, J = 1, N
                  DO 70 K = M, 1, -1
                     IF( B( K, J ).NE.ZERO )THEN
                        TEMP      = ALPHA*B( K, J )
                        B( K, J ) = TEMP
                        IF (NOCONJ) THEN
                        IF( NOUNIT )
     $                     B( K, J ) = B( K, J )*A( K, K )
                        DO 60, I = K + 1, M
                           B( I, J ) = B( I, J ) + TEMP*A( I, K )
   60                   CONTINUE
                        ELSE
                        IF( NOUNIT )
     $                     B( K, J ) = B( K, J )*CONJG(A( K, K ))
                        DO 65, I = K + 1, M
                       B( I, J ) = B( I, J ) + TEMP*CONJG(A( I, K ))
   65                   CONTINUE
                        ENDIF
                     END IF
   70             CONTINUE
   80          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*A'*B   or   B := alpha*conjg( A' )*B.
*
            IF( UPPER )THEN
               DO 120, J = 1, N
                  DO 110, I = M, 1, -1
                     TEMP = B( I, J )
                     IF( NOCONJ )THEN
                        IF( NOUNIT )
     $                     TEMP = TEMP*A( I, I )
                        DO 90, K = 1, I - 1
                           TEMP = TEMP + A( K, I )*B( K, J )
   90                   CONTINUE
                     ELSE
                        IF( NOUNIT )
     $                     TEMP = TEMP*CONJG( A( I, I ) )
                        DO 100, K = 1, I - 1
                           TEMP = TEMP + CONJG( A( K, I ) )*B( K, J )
  100                   CONTINUE
                     END IF
                     B( I, J ) = ALPHA*TEMP
  110             CONTINUE
  120          CONTINUE
            ELSE
               DO 160, J = 1, N
                  DO 150, I = 1, M
                     TEMP = B( I, J )
                     IF( NOCONJ )THEN
                        IF( NOUNIT )
     $                     TEMP = TEMP*A( I, I )
                        DO 130, K = I + 1, M
                           TEMP = TEMP + A( K, I )*B( K, J )
  130                   CONTINUE
                     ELSE
                        IF( NOUNIT )
     $                     TEMP = TEMP*CONJG( A( I, I ) )
                        DO 140, K = I + 1, M
                           TEMP = TEMP + CONJG( A( K, I ) )*B( K, J )
  140                   CONTINUE
                     END IF
                     B( I, J ) = ALPHA*TEMP
  150             CONTINUE
  160          CONTINUE
            END IF
         END IF
      ELSE
         IF( LSAME( TRANSA, 'N' ) .OR.  LSAME( TRANSA, 'R' ))THEN
*
*           Form  B := alpha*B*A.
*
            IF( UPPER )THEN
               DO 200, J = N, 1, -1
                  TEMP = ALPHA
                  IF (NOCONJ) THEN
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  ELSE
                  IF( NOUNIT )
     $               TEMP = TEMP*CONJG(A( J, J ))
                  ENDIF
                  DO 170, I = 1, M
                     B( I, J ) = TEMP*B( I, J )
  170             CONTINUE
                  DO 190, K = 1, J - 1
                     IF( A( K, J ).NE.ZERO )THEN
                        IF (NOCONJ) THEN
                        TEMP = ALPHA*A( K, J )
                        ELSE
                        TEMP = ALPHA*CONJG(A( K, J ))
                        ENDIF
                        DO 180, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  180                   CONTINUE
                     END IF
  190             CONTINUE
  200          CONTINUE
            ELSE
               DO 240, J = 1, N
                  TEMP = ALPHA
                  IF (NOCONJ) THEN
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  ELSE
                  IF( NOUNIT )
     $               TEMP = TEMP*CONJG(A( J, J ))
                  ENDIF
                  DO 210, I = 1, M
                     B( I, J ) = TEMP*B( I, J )
  210             CONTINUE
                  DO 230, K = J + 1, N
                     IF( A( K, J ).NE.ZERO )THEN
                        IF (NOCONJ) THEN
                        TEMP = ALPHA*A( K, J )
                        ELSE
                        TEMP = ALPHA*CONJG(A( K, J ))
                        ENDIF
                        DO 220, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  220                   CONTINUE
                     END IF
  230             CONTINUE
  240          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*B*A'   or   B := alpha*B*conjg( A' ).
*
            IF( UPPER )THEN
               DO 280, K = 1, N
                  DO 260, J = 1, K - 1
                     IF( A( J, K ).NE.ZERO )THEN
                        IF( NOCONJ )THEN
                           TEMP = ALPHA*A( J, K )
                        ELSE
                           TEMP = ALPHA*CONJG( A( J, K ) )
                        END IF
                        DO 250, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  250                   CONTINUE
                     END IF
  260             CONTINUE
                  TEMP = ALPHA
                  IF( NOUNIT )THEN
                     IF( NOCONJ )THEN
                        TEMP = TEMP*A( K, K )
                     ELSE
                        TEMP = TEMP*CONJG( A( K, K ) )
                     END IF
                  END IF
                  IF( TEMP.NE.ONE )THEN
                     DO 270, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  270                CONTINUE
                  END IF
  280          CONTINUE
            ELSE
               DO 320, K = N, 1, -1
                  DO 300, J = K + 1, N
                     IF( A( J, K ).NE.ZERO )THEN
                        IF( NOCONJ )THEN
                           TEMP = ALPHA*A( J, K )
                        ELSE
                           TEMP = ALPHA*CONJG( A( J, K ) )
                        END IF
                        DO 290, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  290                   CONTINUE
                     END IF
  300             CONTINUE
                  TEMP = ALPHA
                  IF( NOUNIT )THEN
                     IF( NOCONJ )THEN
                        TEMP = TEMP*A( K, K )
                     ELSE
                        TEMP = TEMP*CONJG( A( K, K ) )
                     END IF
                  END IF
                  IF( TEMP.NE.ONE )THEN
                     DO 310, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  310                CONTINUE
                  END IF
  320          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of CTRMM .
*
      END