summaryrefslogtreecommitdiff
path: root/reference/csyrkf.f
blob: 7dbaefa498447c168b07d57fa6b2a46836b98066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
      SUBROUTINE CSYRKF ( UPLO, TRANS, N, K, ALPHA, A, LDA,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO, TRANS
      INTEGER            N, K, LDA, LDC
      COMPLEX            ALPHA, BETA
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  CSYRK  performs one of the symmetric rank k operations
*
*     C := alpha*A*A' + beta*C,
*
*  or
*
*     C := alpha*A'*A + beta*C,
*
*  where  alpha and beta  are scalars,  C is an  n by n symmetric matrix
*  and  A  is an  n by k  matrix in the first case and a  k by n  matrix
*  in the second case.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of the  array  C  is to be  referenced  as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry,  TRANS  specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   C := alpha*A*A' + beta*C.
*
*              TRANS = 'T' or 't'   C := alpha*A'*A + beta*C.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N specifies the order of the matrix C.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*           of  columns   of  the   matrix   A,   and  on   entry   with
*           TRANS = 'T' or 't',  K  specifies  the number of rows of the
*           matrix A.  K must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX         .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - COMPLEX          array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by n  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  BETA   - COMPLEX         .
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  C      - COMPLEX          array of DIMENSION ( LDC, n ).
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*           upper triangular part of the array C must contain the upper
*           triangular part  of the  symmetric matrix  and the strictly
*           lower triangular part of C is not referenced.  On exit, the
*           upper triangular part of the array  C is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*           lower triangular part of the array C must contain the lower
*           triangular part  of the  symmetric matrix  and the strictly
*           upper triangular part of C is not referenced.  On exit, the
*           lower triangular part of the array  C is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, INFO, J, L, NROWA
      COMPLEX            TEMP
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER        ( ONE  = ( 1.0E+0, 0.0E+0 ) )
      COMPLEX            ZERO
      PARAMETER        ( ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      IF( LSAME( TRANS, 'N' ) )THEN
         NROWA = N
      ELSE
         NROWA = K
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF(      ( .NOT.UPPER               ).AND.
     $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'T' ) )      )THEN
         INFO = 2
      ELSE IF( N  .LT.0               )THEN
         INFO = 3
      ELSE IF( K  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
         INFO = 10
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'CSYRK ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( UPPER )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 20, J = 1, N
                  DO 10, I = 1, J
                     C( I, J ) = ZERO
   10             CONTINUE
   20          CONTINUE
            ELSE
               DO 40, J = 1, N
                  DO 30, I = 1, J
                     C( I, J ) = BETA*C( I, J )
   30             CONTINUE
   40          CONTINUE
            END IF
         ELSE
            IF( BETA.EQ.ZERO )THEN
               DO 60, J = 1, N
                  DO 50, I = J, N
                     C( I, J ) = ZERO
   50             CONTINUE
   60          CONTINUE
            ELSE
               DO 80, J = 1, N
                  DO 70, I = J, N
                     C( I, J ) = BETA*C( I, J )
   70             CONTINUE
   80          CONTINUE
            END IF
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  C := alpha*A*A' + beta*C.
*
         IF( UPPER )THEN
            DO 130, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 90, I = 1, J
                     C( I, J ) = ZERO
   90             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 100, I = 1, J
                     C( I, J ) = BETA*C( I, J )
  100             CONTINUE
               END IF
               DO 120, L = 1, K
                  IF( A( J, L ).NE.ZERO )THEN
                     TEMP = ALPHA*A( J, L )
                     DO 110, I = 1, J
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  110                CONTINUE
                  END IF
  120          CONTINUE
  130       CONTINUE
         ELSE
            DO 180, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 140, I = J, N
                     C( I, J ) = ZERO
  140             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 150, I = J, N
                     C( I, J ) = BETA*C( I, J )
  150             CONTINUE
               END IF
               DO 170, L = 1, K
                  IF( A( J, L ).NE.ZERO )THEN
                     TEMP      = ALPHA*A( J, L )
                     DO 160, I = J, N
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  160                CONTINUE
                  END IF
  170          CONTINUE
  180       CONTINUE
         END IF
      ELSE
*
*        Form  C := alpha*A'*A + beta*C.
*
         IF( UPPER )THEN
            DO 210, J = 1, N
               DO 200, I = 1, J
                  TEMP = ZERO
                  DO 190, L = 1, K
                     TEMP = TEMP + A( L, I )*A( L, J )
  190             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  200          CONTINUE
  210       CONTINUE
         ELSE
            DO 240, J = 1, N
               DO 230, I = J, N
                  TEMP = ZERO
                  DO 220, L = 1, K
                     TEMP = TEMP + A( L, I )*A( L, J )
  220             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  230          CONTINUE
  240       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CSYRK .
*
      END