diff options
Diffstat (limited to 'lapack')
-rw-r--r-- | lapack/getri/cgetri.f | 194 | ||||
-rw-r--r-- | lapack/getri/dgetri.f | 193 | ||||
-rw-r--r-- | lapack/getri/sgetri.f | 193 | ||||
-rw-r--r-- | lapack/getri/zgetri.f | 194 |
4 files changed, 0 insertions, 774 deletions
diff --git a/lapack/getri/cgetri.f b/lapack/getri/cgetri.f deleted file mode 100644 index 6840f531c..000000000 --- a/lapack/getri/cgetri.f +++ /dev/null @@ -1,194 +0,0 @@ - SUBROUTINE CGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) -* -* -- LAPACK routine (version 3.0) -- -* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., -* Courant Institute, Argonne National Lab, and Rice University -* June 30, 1999 -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, LWORK, N -* .. -* .. Array Arguments .. - INTEGER IPIV( * ) - COMPLEX A( LDA, * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* CGETRI computes the inverse of a matrix using the LU factorization -* computed by CGETRF. -* -* This method inverts U and then computes inv(A) by solving the system -* inv(A)*L = inv(U) for inv(A). -* -* Arguments -* ========= -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* A (input/output) COMPLEX array, dimension (LDA,N) -* On entry, the factors L and U from the factorization -* A = P*L*U as computed by CGETRF. -* On exit, if INFO = 0, the inverse of the original matrix A. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* IPIV (input) INTEGER array, dimension (N) -* The pivot indices from CGETRF; for 1<=i<=N, row i of the -* matrix was interchanged with row IPIV(i). -* -* WORK (workspace/output) COMPLEX array, dimension (LWORK) -* On exit, if INFO=0, then WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,N). -* For optimal performance LWORK >= N*NB, where NB is -* the optimal blocksize returned by ILAENV. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is -* singular and its inverse could not be computed. -* -* ===================================================================== -* -* .. Parameters .. - COMPLEX ZERO, ONE - PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ), - $ ONE = ( 1.0E+0, 0.0E+0 ) ) -* .. -* .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB, - $ NBMIN, NN -* .. -* .. External Functions .. - INTEGER ILAENV - EXTERNAL ILAENV -* .. -* .. External Subroutines .. - EXTERNAL CGEMM, CGEMV, CSWAP, CTRSM, CTRTRI, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* -* Test the input parameters. -* - INFO = 0 - NB = ILAENV( 1, 'CGETRI', ' ', N, -1, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = LWKOPT - LQUERY = ( LWORK.EQ.-1 ) - IF( N.LT.0 ) THEN - INFO = -1 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -3 - ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN - INFO = -6 - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'CGETRI', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( N.EQ.0 ) - $ RETURN -* -* Form inv(U). If INFO > 0 from CTRTRI, then U is singular, -* and the inverse is not computed. -* - CALL CTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO ) - IF( INFO.GT.0 ) - $ RETURN -* - NBMIN = 2 - LDWORK = N - IF( NB.GT.1 .AND. NB.LT.N ) THEN - IWS = MAX( LDWORK*NB, 1 ) - IF( LWORK.LT.IWS ) THEN - NB = LWORK / LDWORK - NBMIN = MAX( 2, ILAENV( 2, 'CGETRI', ' ', N, -1, -1, -1 ) ) - END IF - ELSE - IWS = N - END IF -* -* Solve the equation inv(A)*L = inv(U) for inv(A). -* - IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN -* -* Use unblocked code. -* - DO 20 J = N, 1, -1 -* -* Copy current column of L to WORK and replace with zeros. -* - DO 10 I = J + 1, N - WORK( I ) = A( I, J ) - A( I, J ) = ZERO - 10 CONTINUE -* -* Compute current column of inv(A). -* - IF( J.LT.N ) - $ CALL CGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ), - $ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 ) - 20 CONTINUE - ELSE -* -* Use blocked code. -* - NN = ( ( N-1 ) / NB )*NB + 1 - DO 50 J = NN, 1, -NB - JB = MIN( NB, N-J+1 ) -* -* Copy current block column of L to WORK and replace with -* zeros. -* - DO 40 JJ = J, J + JB - 1 - DO 30 I = JJ + 1, N - WORK( I+( JJ-J )*LDWORK ) = A( I, JJ ) - A( I, JJ ) = ZERO - 30 CONTINUE - 40 CONTINUE -* -* Compute current block column of inv(A). -* - IF( J+JB.LE.N ) - $ CALL CGEMM( 'No transpose', 'No transpose', N, JB, - $ N-J-JB+1, -ONE, A( 1, J+JB ), LDA, - $ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA ) - CALL CTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB, - $ ONE, WORK( J ), LDWORK, A( 1, J ), LDA ) - 50 CONTINUE - END IF -* -* Apply column interchanges. -* - DO 60 J = N - 1, 1, -1 - JP = IPIV( J ) - IF( JP.NE.J ) - $ CALL CSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 ) - 60 CONTINUE -* - WORK( 1 ) = IWS - RETURN -* -* End of CGETRI -* - END diff --git a/lapack/getri/dgetri.f b/lapack/getri/dgetri.f deleted file mode 100644 index c67a34803..000000000 --- a/lapack/getri/dgetri.f +++ /dev/null @@ -1,193 +0,0 @@ - SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) -* -* -- LAPACK routine (version 3.0) -- -* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., -* Courant Institute, Argonne National Lab, and Rice University -* June 30, 1999 -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, LWORK, N -* .. -* .. Array Arguments .. - INTEGER IPIV( * ) - DOUBLE PRECISION A( LDA, * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* DGETRI computes the inverse of a matrix using the LU factorization -* computed by DGETRF. -* -* This method inverts U and then computes inv(A) by solving the system -* inv(A)*L = inv(U) for inv(A). -* -* Arguments -* ========= -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* On entry, the factors L and U from the factorization -* A = P*L*U as computed by DGETRF. -* On exit, if INFO = 0, the inverse of the original matrix A. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* IPIV (input) INTEGER array, dimension (N) -* The pivot indices from DGETRF; for 1<=i<=N, row i of the -* matrix was interchanged with row IPIV(i). -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) -* On exit, if INFO=0, then WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,N). -* For optimal performance LWORK >= N*NB, where NB is -* the optimal blocksize returned by ILAENV. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is -* singular and its inverse could not be computed. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB, - $ NBMIN, NN -* .. -* .. External Functions .. - INTEGER ILAENV - EXTERNAL ILAENV -* .. -* .. External Subroutines .. - EXTERNAL DGEMM, DGEMV, DSWAP, DTRSM, DTRTRI, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* -* Test the input parameters. -* - INFO = 0 - NB = ILAENV( 1, 'DGETRI', ' ', N, -1, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = LWKOPT - LQUERY = ( LWORK.EQ.-1 ) - IF( N.LT.0 ) THEN - INFO = -1 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -3 - ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN - INFO = -6 - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DGETRI', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( N.EQ.0 ) - $ RETURN -* -* Form inv(U). If INFO > 0 from DTRTRI, then U is singular, -* and the inverse is not computed. -* - CALL DTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO ) - IF( INFO.GT.0 ) - $ RETURN -* - NBMIN = 2 - LDWORK = N - IF( NB.GT.1 .AND. NB.LT.N ) THEN - IWS = MAX( LDWORK*NB, 1 ) - IF( LWORK.LT.IWS ) THEN - NB = LWORK / LDWORK - NBMIN = MAX( 2, ILAENV( 2, 'DGETRI', ' ', N, -1, -1, -1 ) ) - END IF - ELSE - IWS = N - END IF -* -* Solve the equation inv(A)*L = inv(U) for inv(A). -* - IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN -* -* Use unblocked code. -* - DO 20 J = N, 1, -1 -* -* Copy current column of L to WORK and replace with zeros. -* - DO 10 I = J + 1, N - WORK( I ) = A( I, J ) - A( I, J ) = ZERO - 10 CONTINUE -* -* Compute current column of inv(A). -* - IF( J.LT.N ) - $ CALL DGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ), - $ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 ) - 20 CONTINUE - ELSE -* -* Use blocked code. -* - NN = ( ( N-1 ) / NB )*NB + 1 - DO 50 J = NN, 1, -NB - JB = MIN( NB, N-J+1 ) -* -* Copy current block column of L to WORK and replace with -* zeros. -* - DO 40 JJ = J, J + JB - 1 - DO 30 I = JJ + 1, N - WORK( I+( JJ-J )*LDWORK ) = A( I, JJ ) - A( I, JJ ) = ZERO - 30 CONTINUE - 40 CONTINUE -* -* Compute current block column of inv(A). -* - IF( J+JB.LE.N ) - $ CALL DGEMM( 'No transpose', 'No transpose', N, JB, - $ N-J-JB+1, -ONE, A( 1, J+JB ), LDA, - $ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA ) - CALL DTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB, - $ ONE, WORK( J ), LDWORK, A( 1, J ), LDA ) - 50 CONTINUE - END IF -* -* Apply column interchanges. -* - DO 60 J = N - 1, 1, -1 - JP = IPIV( J ) - IF( JP.NE.J ) - $ CALL DSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 ) - 60 CONTINUE -* - WORK( 1 ) = IWS - RETURN -* -* End of DGETRI -* - END diff --git a/lapack/getri/sgetri.f b/lapack/getri/sgetri.f deleted file mode 100644 index ec5932f16..000000000 --- a/lapack/getri/sgetri.f +++ /dev/null @@ -1,193 +0,0 @@ - SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) -* -* -- LAPACK routine (version 3.0) -- -* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., -* Courant Institute, Argonne National Lab, and Rice University -* June 30, 1999 -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, LWORK, N -* .. -* .. Array Arguments .. - INTEGER IPIV( * ) - REAL A( LDA, * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* SGETRI computes the inverse of a matrix using the LU factorization -* computed by SGETRF. -* -* This method inverts U and then computes inv(A) by solving the system -* inv(A)*L = inv(U) for inv(A). -* -* Arguments -* ========= -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* A (input/output) REAL array, dimension (LDA,N) -* On entry, the factors L and U from the factorization -* A = P*L*U as computed by SGETRF. -* On exit, if INFO = 0, the inverse of the original matrix A. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* IPIV (input) INTEGER array, dimension (N) -* The pivot indices from SGETRF; for 1<=i<=N, row i of the -* matrix was interchanged with row IPIV(i). -* -* WORK (workspace/output) REAL array, dimension (LWORK) -* On exit, if INFO=0, then WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,N). -* For optimal performance LWORK >= N*NB, where NB is -* the optimal blocksize returned by ILAENV. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is -* singular and its inverse could not be computed. -* -* ===================================================================== -* -* .. Parameters .. - REAL ZERO, ONE - PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) -* .. -* .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB, - $ NBMIN, NN -* .. -* .. External Functions .. - INTEGER ILAENV - EXTERNAL ILAENV -* .. -* .. External Subroutines .. - EXTERNAL SGEMM, SGEMV, SSWAP, STRSM, STRTRI, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* -* Test the input parameters. -* - INFO = 0 - NB = ILAENV( 1, 'SGETRI', ' ', N, -1, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = LWKOPT - LQUERY = ( LWORK.EQ.-1 ) - IF( N.LT.0 ) THEN - INFO = -1 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -3 - ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN - INFO = -6 - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'SGETRI', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( N.EQ.0 ) - $ RETURN -* -* Form inv(U). If INFO > 0 from STRTRI, then U is singular, -* and the inverse is not computed. -* - CALL STRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO ) - IF( INFO.GT.0 ) - $ RETURN -* - NBMIN = 2 - LDWORK = N - IF( NB.GT.1 .AND. NB.LT.N ) THEN - IWS = MAX( LDWORK*NB, 1 ) - IF( LWORK.LT.IWS ) THEN - NB = LWORK / LDWORK - NBMIN = MAX( 2, ILAENV( 2, 'SGETRI', ' ', N, -1, -1, -1 ) ) - END IF - ELSE - IWS = N - END IF -* -* Solve the equation inv(A)*L = inv(U) for inv(A). -* - IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN -* -* Use unblocked code. -* - DO 20 J = N, 1, -1 -* -* Copy current column of L to WORK and replace with zeros. -* - DO 10 I = J + 1, N - WORK( I ) = A( I, J ) - A( I, J ) = ZERO - 10 CONTINUE -* -* Compute current column of inv(A). -* - IF( J.LT.N ) - $ CALL SGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ), - $ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 ) - 20 CONTINUE - ELSE -* -* Use blocked code. -* - NN = ( ( N-1 ) / NB )*NB + 1 - DO 50 J = NN, 1, -NB - JB = MIN( NB, N-J+1 ) -* -* Copy current block column of L to WORK and replace with -* zeros. -* - DO 40 JJ = J, J + JB - 1 - DO 30 I = JJ + 1, N - WORK( I+( JJ-J )*LDWORK ) = A( I, JJ ) - A( I, JJ ) = ZERO - 30 CONTINUE - 40 CONTINUE -* -* Compute current block column of inv(A). -* - IF( J+JB.LE.N ) - $ CALL SGEMM( 'No transpose', 'No transpose', N, JB, - $ N-J-JB+1, -ONE, A( 1, J+JB ), LDA, - $ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA ) - CALL STRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB, - $ ONE, WORK( J ), LDWORK, A( 1, J ), LDA ) - 50 CONTINUE - END IF -* -* Apply column interchanges. -* - DO 60 J = N - 1, 1, -1 - JP = IPIV( J ) - IF( JP.NE.J ) - $ CALL SSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 ) - 60 CONTINUE -* - WORK( 1 ) = IWS - RETURN -* -* End of SGETRI -* - END diff --git a/lapack/getri/zgetri.f b/lapack/getri/zgetri.f deleted file mode 100644 index 1eb4eb7f1..000000000 --- a/lapack/getri/zgetri.f +++ /dev/null @@ -1,194 +0,0 @@ - SUBROUTINE ZGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) -* -* -- LAPACK routine (version 3.0) -- -* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., -* Courant Institute, Argonne National Lab, and Rice University -* June 30, 1999 -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, LWORK, N -* .. -* .. Array Arguments .. - INTEGER IPIV( * ) - COMPLEX*16 A( LDA, * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* ZGETRI computes the inverse of a matrix using the LU factorization -* computed by ZGETRF. -* -* This method inverts U and then computes inv(A) by solving the system -* inv(A)*L = inv(U) for inv(A). -* -* Arguments -* ========= -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* A (input/output) COMPLEX*16 array, dimension (LDA,N) -* On entry, the factors L and U from the factorization -* A = P*L*U as computed by ZGETRF. -* On exit, if INFO = 0, the inverse of the original matrix A. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,N). -* -* IPIV (input) INTEGER array, dimension (N) -* The pivot indices from ZGETRF; for 1<=i<=N, row i of the -* matrix was interchanged with row IPIV(i). -* -* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) -* On exit, if INFO=0, then WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,N). -* For optimal performance LWORK >= N*NB, where NB is -* the optimal blocksize returned by ILAENV. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is -* singular and its inverse could not be computed. -* -* ===================================================================== -* -* .. Parameters .. - COMPLEX*16 ZERO, ONE - PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ), - $ ONE = ( 1.0D+0, 0.0D+0 ) ) -* .. -* .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB, - $ NBMIN, NN -* .. -* .. External Functions .. - INTEGER ILAENV - EXTERNAL ILAENV -* .. -* .. External Subroutines .. - EXTERNAL XERBLA, ZGEMM, ZGEMV, ZSWAP, ZTRSM, ZTRTRI -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* -* Test the input parameters. -* - INFO = 0 - NB = ILAENV( 1, 'ZGETRI', ' ', N, -1, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = LWKOPT - LQUERY = ( LWORK.EQ.-1 ) - IF( N.LT.0 ) THEN - INFO = -1 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -3 - ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN - INFO = -6 - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'ZGETRI', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( N.EQ.0 ) - $ RETURN -* -* Form inv(U). If INFO > 0 from ZTRTRI, then U is singular, -* and the inverse is not computed. -* - CALL ZTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO ) - IF( INFO.GT.0 ) - $ RETURN -* - NBMIN = 2 - LDWORK = N - IF( NB.GT.1 .AND. NB.LT.N ) THEN - IWS = MAX( LDWORK*NB, 1 ) - IF( LWORK.LT.IWS ) THEN - NB = LWORK / LDWORK - NBMIN = MAX( 2, ILAENV( 2, 'ZGETRI', ' ', N, -1, -1, -1 ) ) - END IF - ELSE - IWS = N - END IF -* -* Solve the equation inv(A)*L = inv(U) for inv(A). -* - IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN -* -* Use unblocked code. -* - DO 20 J = N, 1, -1 -* -* Copy current column of L to WORK and replace with zeros. -* - DO 10 I = J + 1, N - WORK( I ) = A( I, J ) - A( I, J ) = ZERO - 10 CONTINUE -* -* Compute current column of inv(A). -* - IF( J.LT.N ) - $ CALL ZGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ), - $ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 ) - 20 CONTINUE - ELSE -* -* Use blocked code. -* - NN = ( ( N-1 ) / NB )*NB + 1 - DO 50 J = NN, 1, -NB - JB = MIN( NB, N-J+1 ) -* -* Copy current block column of L to WORK and replace with -* zeros. -* - DO 40 JJ = J, J + JB - 1 - DO 30 I = JJ + 1, N - WORK( I+( JJ-J )*LDWORK ) = A( I, JJ ) - A( I, JJ ) = ZERO - 30 CONTINUE - 40 CONTINUE -* -* Compute current block column of inv(A). -* - IF( J+JB.LE.N ) - $ CALL ZGEMM( 'No transpose', 'No transpose', N, JB, - $ N-J-JB+1, -ONE, A( 1, J+JB ), LDA, - $ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA ) - CALL ZTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB, - $ ONE, WORK( J ), LDWORK, A( 1, J ), LDA ) - 50 CONTINUE - END IF -* -* Apply column interchanges. -* - DO 60 J = N - 1, 1, -1 - JP = IPIV( J ) - IF( JP.NE.J ) - $ CALL ZSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 ) - 60 CONTINUE -* - WORK( 1 ) = IWS - RETURN -* -* End of ZGETRI -* - END |