1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
|
![ncnn](https://raw.githubusercontent.com/Tencent/ncnn/master/images/256-ncnn.png)
# ncnn
[![License](https://img.shields.io/badge/license-BSD_3_Clause-blue.svg?style=for-the-badge)](LICENSE.txt)
[![Download Total Count](https://img.shields.io/github/downloads/Tencent/ncnn/total.svg?style=for-the-badge)](https://github.com/Tencent/ncnn/releases)
[![codecov](https://img.shields.io/codecov/c/github/Tencent/ncnn/master?style=for-the-badge)](https://codecov.io/gh/Tencent/ncnn)
ncnn is a high-performance neural network inference computing framework optimized for mobile platforms.
ncnn is deeply considerate about deployment and uses on mobile phones from the beginning of design.
ncnn does not have third party dependencies. It is cross-platform, and runs faster than all known open source frameworks on mobile phone cpu.
Developers can easily deploy deep learning algorithm models to the mobile platform by using efficient ncnn implementation,
create intelligent APPs, and bring the artificial intelligence to your fingertips.
ncnn is currently being used in many Tencent applications, such as QQ, Qzone, WeChat, Pitu and so on.
ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。
ncnn 从设计之初深刻考虑手机端的部署和使用。
无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。
基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,
开发出人工智能 APP,将 AI 带到你的指尖。
ncnn 目前已在腾讯多款应用中使用,如:QQ,Qzone,微信,天天 P 图等。
---
<table>
<tr>
<td>
<b>技术交流 QQ 群</b><br />
637093648 (超多大佬)<br />
答案:卷卷卷卷卷(已满)
</td>
<td rowspan=2>
<b>Telegram Group</b>
<https://t.me/ncnnyes>
</td>
<td rowspan=2>
<b>Discord Channel</b>
<https://discord.gg/YRsxgmF>
</td>
</tr>
<tr>
<td>
<b>Pocky QQ 群(MLIR YES!)</b><br />
677104663 (超多大佬)<br />
答案:multi-level intermediate representation
</td>
</tr>
</table>
---
## Download & Build status
https://github.com/Tencent/ncnn/releases/latest
<table>
<tr>
<td rowspan=2>
<img src="https://user-images.githubusercontent.com/25181517/192108372-f71d70ac-7ae6-4c0d-8395-51d8870c2ef0.png" width="120" height="auto">
</td>
<td colspan=3>
**[how to build ncnn library](https://github.com/Tencent/ncnn/wiki/how-to-build) on Linux / Windows / macOS / Raspberry Pi3, Pi4 / POWER / Android / NVIDIA Jetson / iOS / WebAssembly / AllWinner D1 / Loongson 2K1000**
</td>
</tr>
<tr>
<td>Source</td>
<td colspan=2>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-full-source.zip)
</td>
</tr>
<tr>
<td rowspan=3>
<img src="https://user-images.githubusercontent.com/25181517/117269608-b7dcfb80-ae58-11eb-8e66-6cc8753553f0.png" width="120" height="auto">
</td>
<td colspan=3>
- [Build for Android](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-android)
- [Build for Termux on Android](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-termux-on-android)
</td>
</tr>
<tr>
<td>Android</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-android-vulkan.zip)
[<img src="https://img.shields.io/badge/+shared-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-android-vulkan-shared.zip)
</td>
<td rowspan=2>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/android-armv7-gpu.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Aandroid-armv7-gpu)
</td>
</tr>
<tr>
<td>Android cpuonly</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-android.zip)
[<img src="https://img.shields.io/badge/+shared-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-android-shared.zip)
</td>
</tr>
<tr>
<td rowspan=5>
<img src="https://user-images.githubusercontent.com/25181517/121406611-a8246b80-c95e-11eb-9b11-b771486377f6.png" width="120" height="auto">
</td>
<td colspan=3>
- [Build for iOS on macOS with xcode](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-ios-on-macos-with-xcode)
</td>
</tr>
<tr>
<td>iOS</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ios-vulkan.zip)
[<img src="https://img.shields.io/badge/+bitcode-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ios-vulkan-bitcode.zip)
</td>
<td rowspan=2>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/ios-arm64-gpu.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Aios-arm64-gpu)
</td>
</tr>
<tr>
<td>iOS cpuonly</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ios.zip)
[<img src="https://img.shields.io/badge/+bitcode-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ios-bitcode.zip)
</td>
</tr>
<tr>
<td>iOS-Simulator</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ios-simulator-vulkan.zip)
[<img src="https://img.shields.io/badge/+bitcode-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ios-simulator-vulkan-bitcode.zip)
</td>
<td rowspan=2>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/ios-simulator-gpu.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Aios-simulator-gpu)
</td>
</tr>
<tr>
<td>iOS-Simulator cpuonly</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ios-simulator.zip)
[<img src="https://img.shields.io/badge/+bitcode-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ios-simulator-bitcode.zip)
</td>
</tr>
<tr>
<td rowspan=11>
<img src="https://user-images.githubusercontent.com/25181517/186884152-ae609cca-8cf1-4175-8d60-1ce1fa078ca2.png" width="120" height="auto">
</td>
<td colspan=3>
- [Build for macOS](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-macos)
</td>
</tr>
<tr>
<td>macOS</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-macos-vulkan.zip)
</td>
<td rowspan=2>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/macos-arm64-gpu.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Amacos-arm64-gpu)
</td>
</tr>
<tr>
<td>macOS cpuonly</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-macos.zip)
</td>
</tr>
<tr>
<td>Mac-Catalyst</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-mac-catalyst-vulkan.zip)
[<img src="https://img.shields.io/badge/+bitcode-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-mac-catalyst-vulkan-bitcode.zip)
</td>
<td rowspan=2>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/mac-catalyst-arm64-gpu.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Amac-catalyst-arm64-gpu)
</td>
</tr>
<tr>
<td>Mac-Catalyst cpuonly</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-mac-catalyst.zip)
[<img src="https://img.shields.io/badge/+bitcode-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-mac-catalyst-bitcode.zip)
</td>
</tr>
<tr>
<td>watchOS</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-watchos.zip)
</td>
<td rowspan=2>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/watchos-cpu.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Awatchos-cpu)
</td>
</tr>
<tr>
<td>watchOS-Simulator</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-watchos-simulator.zip)
</td>
</tr>
<tr>
<td>tvOS</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-tvos.zip)
</td>
<td rowspan=2>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/tvos-cpu.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Atvos-cpu)
</td>
</tr>
<tr>
<td>tvOS-Simulator</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-tvos-simulator.zip)
</td>
</tr>
<tr>
<td>Apple xcframework</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-apple-vulkan.zip)
[<img src="https://img.shields.io/badge/+bitcode-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-apple-vulkan-bitcode.zip)
</td>
<td rowspan=2>
</td>
</tr>
<tr>
<td>Apple xcframework cpuonly</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-apple.zip)
[<img src="https://img.shields.io/badge/+bitcode-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-apple-bitcode.zip)
</td>
</tr>
<tr>
<td rowspan=3>
<img src="https://user-images.githubusercontent.com/25181517/186884153-99edc188-e4aa-4c84-91b0-e2df260ebc33.png" width="120" height="auto">
</td>
<td colspan=3>
- [Build for Linux / NVIDIA Jetson / Raspberry Pi3, Pi4 / POWER](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-linux)
</td>
</tr>
<tr>
<td>Ubuntu 20.04</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ubuntu-2004.zip)
[<img src="https://img.shields.io/badge/+shared-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ubuntu-2004-shared.zip)
</td>
<td rowspan=2>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/linux-x64-gpu-gcc.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Alinux-x64-gpu-gcc)
</td>
</tr>
<tr>
<td>Ubuntu 22.04</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ubuntu-2204.zip)
[<img src="https://img.shields.io/badge/+shared-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-ubuntu-2204-shared.zip)
</td>
</tr>
<tr>
<td rowspan=5>
<img alt="windows" src="https://user-images.githubusercontent.com/25181517/186884150-05e9ff6d-340e-4802-9533-2c3f02363ee3.png" width="120" height="auto">
</td>
<td colspan=3>
- [Build for Windows x64 using VS2017](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-windows-x64-using-visual-studio-community-2017)
</td>
</tr>
<tr>
<td>VS2015</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-windows-vs2015.zip)
[<img src="https://img.shields.io/badge/+shared-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-windows-vs2015-shared.zip)
</td>
<td rowspan=4>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/windows-x64-gpu.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Awindows-x64-gpu)
</td>
</tr>
<tr>
<td>VS2017</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-windows-vs2017.zip)
[<img src="https://img.shields.io/badge/+shared-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-windows-vs2017-shared.zip)
</td>
</tr>
<tr>
<td>VS2019</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-windows-vs2019.zip)
[<img src="https://img.shields.io/badge/+shared-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-windows-vs2019-shared.zip)
</td>
</tr>
<tr>
<td>VS2022</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-windows-vs2022.zip)
[<img src="https://img.shields.io/badge/+shared-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-windows-vs2022-shared.zip)
</td>
</tr>
<tr>
<td rowspan=2>
<img src="https://user-images.githubusercontent.com/25181517/188324036-d704ac9a-6e61-4722-b978-254b25b61bed.png" width="120" height="auto">
</td>
<td colspan=3>
- [Build for WebAssembly](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-webassembly)
</td>
</tr>
<tr>
<td>WebAssembly</td>
<td>
[<img src="https://img.shields.io/badge/download-blue?style=for-the-badge">](https://github.com/Tencent/ncnn/releases/latest/download/ncnn-20240102-webassembly.zip)
</td>
<td>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/web-assembly.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Aweb-assembly)
</td>
</tr>
<tr>
<td rowspan=8>
<img src="https://github.com/marwin1991/profile-technology-icons/assets/76662862/2481dc48-be6b-4ebb-9e8c-3b957efe69fa" width="120" height="auto">
</td>
<td colspan=3>
- [Build for ARM Cortex-A family with cross-compiling](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-arm-cortex-a-family-with-cross-compiling)
- [Build for Hisilicon platform with cross-compiling](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-hisilicon-platform-with-cross-compiling)
- [Build for AllWinner D1](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-allwinner-d1)
- [Build for Loongson 2K1000](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-loongson-2k1000)
- [Build for QNX](https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-qnx)
</td>
</tr>
<tr>
<td>Linux (arm)</td>
<td></td>
<td>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/linux-arm-cpu-gcc.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Alinux-arm-cpu-gcc)
</td>
</tr>
<tr>
<td>Linux (aarch64)</td>
<td></td>
<td>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/linux-aarch64-cpu-gcc.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Alinux-aarch64-cpu-gcc)
</td>
</tr>
<tr>
<td>Linux (mips)</td>
<td></td>
<td>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/linux-mips-cpu-gcc.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Alinux-mips-cpu-gcc)
</td>
</tr>
<tr>
<td>Linux (mips64)</td>
<td></td>
<td>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/linux-mips64-cpu-gcc.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Alinux-mips64-cpu-gcc)
</td>
</tr>
<tr>
<td>Linux (ppc64)</td>
<td></td>
<td>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/linux-ppc64-cpu-gcc.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Alinux-ppc64-cpu-gcc)
</td>
</tr>
<tr>
<td>Linux (riscv64)</td>
<td></td>
<td>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/linux-riscv64-cpu-gcc.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Alinux-riscv64-cpu-gcc)
</td>
</tr>
<tr>
<td>Linux (loongarch64)</td>
<td></td>
<td>
[<img src="https://img.shields.io/github/actions/workflow/status/Tencent/ncnn/linux-loongarch64-cpu-gcc.yml?branch=master&style=for-the-badge&label=build">](https://github.com/Tencent/ncnn/actions?query=workflow%3Alinux-loongarch64-cpu-gcc)
</td>
</tr>
</table>
---
## Support most commonly used CNN network
## 支持大部分常用的 CNN 网络
- Classical CNN:
[VGG](https://github.com/BVLC/caffe/wiki/Model-Zoo#models-used-by-the-vgg-team-in-ilsvrc-2014)
[AlexNet](https://github.com/BVLC/caffe/tree/9b891540183ddc834a02b2bd81b31afae71b2153/models/bvlc_alexnet)
[GoogleNet](https://github.com/BVLC/caffe/tree/9b891540183ddc834a02b2bd81b31afae71b2153/models/bvlc_googlenet)
Inception
...
- Practical CNN:
[ResNet](https://github.com/tornadomeet/ResNet)
[DenseNet](https://github.com/liuzhuang13/DenseNet)
[SENet](https://github.com/hujie-frank/SENet)
[FPN](https://github.com/unsky/FPN)
...
- Light-weight CNN:
[SqueezeNet](https://github.com/forresti/SqueezeNet)
[MobileNetV1](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md)
[MobileNetV2/V3](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md)
[ShuffleNetV1](https://github.com/farmingyard/ShuffleNet)
[ShuffleNetV2](https://github.com/opconty/keras-shufflenetV2)
[MNasNet](https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet)
...
- Face Detection:
[MTCNN](https://github.com/ipazc/mtcnn)
[RetinaFace](https://github.com/biubug6/Pytorch_Retinaface)
[scrfd](https://github.com/nihui/ncnn-android-scrfd)
...
- Detection:
[VGG-SSD](https://github.com/lzx1413/CAFFE_SSD)
[MobileNet-SSD](https://github.com/chuanqi305/MobileNet-SSD)
[SqueezeNet-SSD](https://github.com/chuanqi305/SqueezeNet-SSD)
[MobileNetV2-SSDLite](https://github.com/chuanqi305/MobileNetv2-SSDLite)
[MobileNetV3-SSDLite](https://github.com/XiaoyuHuang96/MobilenetV3SSDLite-tfkeras)
...
- Detection:
[Faster-RCNN](https://github.com/rbgirshick/py-faster-rcnn)
[R-FCN](https://github.com/daijifeng001/R-FCN)
...
- Detection:
[YOLOv2](https://github.com/longcw/yolo2-pytorch)
[YOLOv3](https://github.com/ultralytics/yolov3)
[MobileNet-YOLOv3](https://github.com/eric612/MobileNet-YOLO)
[YOLOv4](https://github.com/Tianxiaomo/pytorch-YOLOv4)
[YOLOv5](https://github.com/ultralytics/yolov5)
[YOLOv7](https://github.com/WongKinYiu/yolov7)
[YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)
...
- Detection:
[NanoDet](https://github.com/RangiLyu/nanodet)
- Segmentation:
[FCN](https://github.com/unsky/FPN)
[PSPNet](https://github.com/hszhao/PSPNet)
[UNet](https://github.com/zhixuhao/unet)
[YOLACT](https://github.com/dbolya/yolact)
...
- Pose Estimation:
[SimplePose](https://github.com/dog-qiuqiu/Ultralight-SimplePose)
...
---
## HowTo
**[use ncnn with alexnet](https://github.com/Tencent/ncnn/wiki/use-ncnn-with-alexnet) with detailed steps, recommended for beginners :)**
**[ncnn 组件使用指北 alexnet](https://github.com/Tencent/ncnn/wiki/use-ncnn-with-alexnet.zh) 附带详细步骤,新人强烈推荐 :)**
**[use netron for ncnn model visualization](https://netron.app)**
**[out-of-the-box web model conversion](https://convertmodel.com/#outputFormat=ncnn)**
[ncnn low-level operation api](https://github.com/Tencent/ncnn/wiki/low-level-operation-api)
[ncnn param and model file spec](https://github.com/Tencent/ncnn/wiki/param-and-model-file-structure)
[ncnn operation param weight table](https://github.com/Tencent/ncnn/wiki/operation-param-weight-table)
[how to implement custom layer step by step](https://github.com/Tencent/ncnn/wiki/how-to-implement-custom-layer-step-by-step)
---
## FAQ
**[ncnn throw error](https://github.com/Tencent/ncnn/wiki/FAQ-ncnn-throw-error)**
**[ncnn produce wrong result](https://github.com/Tencent/ncnn/wiki/FAQ-ncnn-produce-wrong-result)**
**[ncnn vulkan](https://github.com/Tencent/ncnn/wiki/FAQ-ncnn-vulkan)**
---
## Features
- Supports convolutional neural networks, supports multiple input and multi-branch structure, can calculate part of the branch
- No third-party library dependencies, does not rely on BLAS / NNPACK or any other computing framework
- Pure C++ implementation, cross-platform, supports Android, iOS and so on
- ARM NEON assembly level of careful optimization, calculation speed is extremely high
- Sophisticated memory management and data structure design, very low memory footprint
- Supports multi-core parallel computing acceleration, ARM big.LITTLE CPU scheduling optimization
- Supports GPU acceleration via the next-generation low-overhead Vulkan API
- Extensible model design, supports 8bit quantization and half-precision floating point storage, can import caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) models
- Support direct memory zero copy reference load network model
- Can be registered with custom layer implementation and extended
- Well, it is strong, not afraid of being stuffed with 卷 QvQ
## 功能概述
- 支持卷积神经网络,支持多输入和多分支结构,可计算部分分支
- 无任何第三方库依赖,不依赖 BLAS/NNPACK 等计算框架
- 纯 C++ 实现,跨平台,支持 Android / iOS 等
- ARM Neon 汇编级良心优化,计算速度极快
- 精细的内存管理和数据结构设计,内存占用极低
- 支持多核并行计算加速,ARM big.LITTLE CPU 调度优化
- 支持基于全新低消耗的 Vulkan API GPU 加速
- 可扩展的模型设计,支持 8bit [量化](tools/quantize) 和半精度浮点存储,可导入 caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) 模型
- 支持直接内存零拷贝引用加载网络模型
- 可注册自定义层实现并扩展
- 恩,很强就是了,不怕被塞卷 QvQ
---
## supported platform matrix
- ✅ = known work and runs fast with good optimization
- ✔️ = known work, but speed may not be fast enough
- ❔ = shall work, not confirmed
- / = not applied
| | Windows | Linux | Android | macOS | iOS |
| ---------- | ------- | ----- | ------- | ----- | --- |
| intel-cpu | ✔️ | ✔️ | ❔ | ✔️ | / |
| intel-gpu | ✔️ | ✔️ | ❔ | ❔ | / |
| amd-cpu | ✔️ | ✔️ | ❔ | ✔️ | / |
| amd-gpu | ✔️ | ✔️ | ❔ | ❔ | / |
| nvidia-gpu | ✔️ | ✔️ | ❔ | ❔ | / |
| qcom-cpu | ❔ | ✔️ | ✅ | / | / |
| qcom-gpu | ❔ | ✔️ | ✔️ | / | / |
| arm-cpu | ❔ | ❔ | ✅ | / | / |
| arm-gpu | ❔ | ❔ | ✔️ | / | / |
| apple-cpu | / | / | / | ✔️ | ✅ |
| apple-gpu | / | / | / | ✔️ | ✔️ |
| ibm-cpu | / | ✔️ | / | / | / |
---
## Project examples
- <https://github.com/nihui/ncnn-android-squeezenet>
- <https://github.com/nihui/ncnn-android-styletransfer>
- <https://github.com/nihui/ncnn-android-mobilenetssd>
- <https://github.com/moli232777144/mtcnn_ncnn>
- <https://github.com/nihui/ncnn-android-yolov5>
- <https://github.com/xiang-wuu/ncnn-android-yolov7>
- <https://github.com/nihui/ncnn-android-scrfd> 🤩
- <https://github.com/shaoshengsong/qt_android_ncnn_lib_encrypt_example>
<img src="https://github.com/nihui/ncnn-assets/raw/master/20181217/ncnn-2.jpg" height ="230"/><img src="https://github.com/nihui/ncnn-assets/raw/master/20181217/4.jpg" height ="230"/><img src="https://github.com/nihui/ncnn-assets/raw/master/20181217/ncnn-33.jpg" height ="230"/><img src="https://github.com/nihui/ncnn-assets/raw/master/20181217/ncnn-m.png" height ="230"/><img src="https://github.com/nihui/ncnn-android-yolov5/raw/master/screenshot.jpg" height ="230"/><img src="https://github.com/nihui/ncnn-android-scrfd/raw/master/screenshot.jpg" height ="230"/><br>
- <https://github.com/magicse/ncnn-colorization-siggraph17><br>
<img src="https://user-images.githubusercontent.com/13585785/189326958-f5a8d6f8-caef-49bf-88da-ae494371195d.jpg" width ="700"/>
- <https://github.com/mizu-bai/ncnn-fortran> Call ncnn from Fortran
- <https://github.com/k2-fsa/sherpa> Use ncnn for real-time speech
recognition (i.e., speech-to-text); also support embedded devices and provide
mobile Apps (e.g., Android App)
---
## License
[BSD 3 Clause](LICENSE.txt)
|