diff options
author | Wook Song <wook16.song@samsung.com> | 2024-01-02 15:44:47 +0900 |
---|---|---|
committer | Wook Song <wook16.song@samsung.com> | 2024-01-02 15:44:47 +0900 |
commit | d29facf659495142bf96fc34cf77092b119bf5a4 (patch) | |
tree | 73e1c386dd5d0430198fae51bf63fae81994103f /tools/modelwriter.h | |
parent | 1df4c5bff4ef6ddfef49c080af49b764080f1fe4 (diff) | |
download | ncnn-upstream.tar.gz ncnn-upstream.tar.bz2 ncnn-upstream.zip |
Imported Upstream version 20240102upstream/20240102upstream
Diffstat (limited to 'tools/modelwriter.h')
-rw-r--r-- | tools/modelwriter.h | 2407 |
1 files changed, 2407 insertions, 0 deletions
diff --git a/tools/modelwriter.h b/tools/modelwriter.h new file mode 100644 index 0000000..fd5105e --- /dev/null +++ b/tools/modelwriter.h @@ -0,0 +1,2407 @@ +// Tencent is pleased to support the open source community by making ncnn available. +// +// Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. +// +// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +// in compliance with the License. You may obtain a copy of the License at +// +// https://opensource.org/licenses/BSD-3-Clause +// +// Unless required by applicable law or agreed to in writing, software distributed +// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +// CONDITIONS OF ANY KIND, either express or implied. See the License for the +// specific language governing permissions and limitations under the License. + +#ifdef _MSC_VER +#define _CRT_SECURE_NO_DEPRECATE +#endif + +#include <stdint.h> +#include <algorithm> +#include <map> +#include <set> +#include <vector> + +// ncnn public header +#include "datareader.h" +#include "layer.h" +#include "layer_type.h" +#include "net.h" + +// ncnn private header +#include "layer/batchnorm.h" +#include "layer/bias.h" +#include "layer/binaryop.h" +#include "layer/clip.h" +#include "layer/concat.h" +#include "layer/convolution.h" +#include "layer/convolution1d.h" +#include "layer/convolution3d.h" +#include "layer/convolutiondepthwise.h" +#include "layer/convolutiondepthwise1d.h" +#include "layer/convolutiondepthwise3d.h" +#include "layer/copyto.h" +#include "layer/crop.h" +#include "layer/cumulativesum.h" +#include "layer/deconvolution.h" +#include "layer/deconvolution1d.h" +#include "layer/deconvolution3d.h" +#include "layer/deconvolutiondepthwise.h" +#include "layer/deconvolutiondepthwise1d.h" +#include "layer/deconvolutiondepthwise3d.h" +#include "layer/deformableconv2d.h" +#include "layer/detectionoutput.h" +#include "layer/dropout.h" +#include "layer/eltwise.h" +#include "layer/elu.h" +#include "layer/embed.h" +#include "layer/exp.h" +#include "layer/expanddims.h" +#include "layer/flatten.h" +#include "layer/fold.h" +#include "layer/gelu.h" +#include "layer/gemm.h" +#include "layer/glu.h" +#include "layer/gridsample.h" +#include "layer/groupnorm.h" +#include "layer/gru.h" +#include "layer/hardsigmoid.h" +#include "layer/hardswish.h" +#include "layer/innerproduct.h" +#include "layer/input.h" +#include "layer/instancenorm.h" +#include "layer/interp.h" +#include "layer/layernorm.h" +#include "layer/log.h" +#include "layer/lrn.h" +#include "layer/lstm.h" +#include "layer/matmul.h" +#include "layer/memorydata.h" +#include "layer/mvn.h" +#include "layer/multiheadattention.h" +#include "layer/normalize.h" +#include "layer/padding.h" +#include "layer/permute.h" +#include "layer/pixelshuffle.h" +#include "layer/pooling.h" +#include "layer/pooling1d.h" +#include "layer/pooling3d.h" +#include "layer/power.h" +#include "layer/prelu.h" +#include "layer/priorbox.h" +#include "layer/proposal.h" +#include "layer/psroipooling.h" +#include "layer/quantize.h" +#include "layer/reduction.h" +#include "layer/relu.h" +#include "layer/reorg.h" +#include "layer/requantize.h" +#include "layer/reshape.h" +#include "layer/rnn.h" +#include "layer/roialign.h" +#include "layer/roipooling.h" +#include "layer/scale.h" +#include "layer/shufflechannel.h" +#include "layer/slice.h" +#include "layer/softmax.h" +#include "layer/split.h" +#include "layer/squeeze.h" +#include "layer/threshold.h" +#include "layer/unaryop.h" +#include "layer/unfold.h" +#include "layer/yolodetectionoutput.h" +#include "layer/yolov3detectionoutput.h" + +// for gen_random_weight +#include "../tests/prng.h" + +static struct prng_rand_t g_prng_rand_state; +#define SRAND(seed) prng_srand(seed, &g_prng_rand_state) +#define RAND() prng_rand(&g_prng_rand_state) + +class MemoryFootprintAllocator : public ncnn::Allocator +{ +public: + MemoryFootprintAllocator() + { + current_memory_usage = 0; + memory_footprint = 0; + } + + virtual void* fastMalloc(size_t size) + { + ncnn::MutexLockGuard g(lock); + void* ptr = ncnn::fastMalloc(size); + bookkeeper[ptr] = size; + current_memory_usage += size; + memory_footprint = std::max(memory_footprint, current_memory_usage); + return ptr; + } + + virtual void fastFree(void* ptr) + { + ncnn::MutexLockGuard g(lock); + size_t size = bookkeeper[ptr]; + current_memory_usage -= size; + bookkeeper.erase(bookkeeper.find(ptr)); + ncnn::fastFree(ptr); + } + +public: + int current_memory_usage; + int memory_footprint; + ncnn::Mutex lock; + std::map<void*, size_t> bookkeeper; +}; + +class CustomLayer : public ncnn::Layer +{ +public: + virtual int load_param(const ncnn::ParamDict& pd) + { + mpd = pd; + return 0; + } + + void write_param(FILE* pp) + { + for (int i = 0; i < NCNN_MAX_PARAM_COUNT; i++) + { + int type = mpd.type(i); + if (type == 0) + continue; + + if (type == 2) + { + fprintf(pp, " %d=%d", i, mpd.get(i, 0)); + } + if (type == 3) + { + fprintf(pp, " %d=%e", i, mpd.get(i, 0.f)); + } + if (type == 5) + { + ncnn::Mat v = mpd.get(i, ncnn::Mat()); + int len = v.w; + fprintf(pp, " %d=%d", -i - 23300, len); + const int* p = v; + for (int j = 0; j < len; j++) + { + fprintf(pp, ",%d", p[j]); + } + } + if (type == 6) + { + ncnn::Mat v = mpd.get(i, ncnn::Mat()); + int len = v.w; + fprintf(pp, " %d=%d", -i - 23300, len); + const float* p = v; + for (int j = 0; j < len; j++) + { + fprintf(pp, ",%e", p[j]); + } + } + } + } + +public: + ncnn::ParamDict mpd; +}; + +DEFINE_LAYER_CREATOR(CustomLayer) + +class ModelWriter : public ncnn::Net +{ +public: + ModelWriter(); + + virtual ncnn::Layer* create_custom_layer(const char* type); + + std::vector<ncnn::Blob>& blobs; + std::vector<ncnn::Layer*>& layers; + + bool has_custom_layer; + +public: + // 0=fp32 1=fp16 + int storage_type; + + int gen_random_weight; + + // Cut param and bin -1=no cut + int cutstart; + int cutend; + +public: + int set_cutparam(const char* cutstartname, const char* cutendname); + + int shape_inference(); + int estimate_memory_footprint(); + +public: + int fprintf_param_int_array(int id, const ncnn::Mat& m, FILE* pp); + int fprintf_param_float_array(int id, const ncnn::Mat& m, FILE* pp); + + int fwrite_weight_tag_data(const ncnn::Mat& data, FILE* bp, float a = -1.2f, float b = 1.2f); + int fwrite_weight_data(const ncnn::Mat& data, FILE* bp, float a = -1.2f, float b = 1.2f); + + int save(const char* parampath, const char* binpath); +}; + +ModelWriter::ModelWriter() + : blobs(mutable_blobs()), layers(mutable_layers()) +{ + opt.lightmode = false; + has_custom_layer = false; + gen_random_weight = false; + cutstart = -1; + cutend = -1; + + SRAND(7767517); +} + +ncnn::Layer* ModelWriter::create_custom_layer(const char* type) +{ + ncnn::Layer* layer = Net::create_custom_layer(type); + if (layer) + return layer; + + fprintf(stderr, "create_custom_layer %s\n", type); + + register_custom_layer(type, CustomLayer_layer_creator); + + has_custom_layer = true; + + return Net::create_custom_layer(type); +} + +int ModelWriter::set_cutparam(const char* cutstartname, const char* cutendname) +{ + if (cutstartname != nullptr) + { + int layindex = find_layer_index_by_name(cutstartname); + if (layindex >= 0) + { + cutstart = layindex; + fprintf(stderr, "cutstart layer %d:%s\n", layindex, cutstartname); + } + else + { + fprintf(stderr, "not find target cutstart layer %s\n", cutstartname); + return -1; + } + } + + if (cutendname != nullptr) + { + int layindex = find_layer_index_by_name(cutendname); + if (layindex >= 0) + { + cutend = layindex; + fprintf(stderr, "cutend layer %d:%s\n", layindex, cutendname); + } + else + { + fprintf(stderr, "not find target cutend layer %s\n", cutendname); + return -1; + } + } + + return 0; +} + +int ModelWriter::shape_inference() +{ + if (has_custom_layer) + { + fprintf(stderr, "model has custom layer, shape_inference skipped\n"); + return -1; + } + + const size_t layer_count = layers.size(); + const size_t blob_count = blobs.size(); + + // recreate layer pipeline for param and weight changes + for (size_t i = 0; i < layer_count; i++) + { + ncnn::Layer* layer = layers[i]; + + layer->destroy_pipeline(opt); + + int cret = layer->create_pipeline(opt); + if (cret != 0) + { + NCNN_LOGE("layer create_pipeline %d %s failed", (int)i, layer->name.c_str()); + return -1; + } + } + + ncnn::Extractor ex = create_extractor(); + ex.set_light_mode(true); + + // prepare Input blobs + for (size_t i = 0; i < layer_count; i++) + { + const ncnn::Layer* layer = layers[i]; + if (layer->type == "ncnnfused") + continue; + + if (layer->type != "Input") + continue; + + ncnn::Input* input = (ncnn::Input*)layer; + + int w = input->w; + int h = input->h; + int c = input->c; + + int dims = 0; + if (w == 0 && h == 0 && c == 0) dims = 0; + if (w != 0 && h == 0 && c == 0) dims = 1; + if (w != 0 && h != 0 && c == 0) dims = 2; + if (w != 0 && h != 0 && c != 0) dims = 3; + + if (dims == 0) + { + fprintf(stderr, "Input layer %s without shape info, shape_inference skipped\n", layer->name.c_str()); + return -1; + } + + ncnn::Mat m; + if (dims == 1) m.create(w); + if (dims == 2) m.create(w, h); + if (dims == 3) m.create(w, h, c); + + ex.input(layer->tops[0], m); + } + + // prepare blobs with predefined shape + for (size_t i = 0; i < blob_count; i++) + { + const ncnn::Blob& blob = blobs[i]; + + int dims = blob.shape.dims; + int w = blob.shape.w; + int h = blob.shape.h; + int c = blob.shape.c; + + if (dims == 0) + continue; + + ncnn::Mat m; + if (dims == 1) m.create(w); + if (dims == 2) m.create(w, h); + if (dims == 3) m.create(w, h, c); + + m.fill(0.f); + + ex.input(int(i), m); + } + + fprintf(stderr, "shape_inference\n"); + + // resolve all layer output blob shape + for (size_t i = 0; i < layer_count; i++) + { + const ncnn::Layer* layer = layers[i]; + if (layer->type == "ncnnfused") + continue; + + for (size_t j = 0; j < layer->tops.size(); j++) + { + int top_blob_index = layer->tops[j]; + + ncnn::Mat m; + ex.extract(top_blob_index, m); + + blobs[top_blob_index].shape = m; + } + } + + // assign all layer blob shape + for (size_t i = 0; i < layer_count; i++) + { + ncnn::Layer* layer = layers[i]; + if (layer->type == "ncnnfused") + continue; + + layer->bottom_shapes.resize(layer->bottoms.size()); + for (size_t j = 0; j < layer->bottoms.size(); j++) + { + int bottom_blob_index = layer->bottoms[j]; + + layer->bottom_shapes[j] = blobs[bottom_blob_index].shape; + } + + layer->top_shapes.resize(layer->tops.size()); + for (size_t j = 0; j < layer->tops.size(); j++) + { + int top_blob_index = layer->tops[j]; + + layer->top_shapes[j] = blobs[top_blob_index].shape; + + // fprintf(stderr, "%d %4d %4d %4d | %2d %s\n", blobs[top_blob_index].shape.dims, blobs[top_blob_index].shape.w, blobs[top_blob_index].shape.h, blobs[top_blob_index].shape.c, top_blob_index, blobs[top_blob_index].name.c_str()); + } + } + + return 0; +} + +int ModelWriter::estimate_memory_footprint() +{ + if (has_custom_layer) + { + fprintf(stderr, "model has custom layer, estimate_memory_footprint skipped\n"); + return -1; + } + + const size_t layer_count = layers.size(); + const size_t blob_count = blobs.size(); + + MemoryFootprintAllocator allocator; + + ncnn::Extractor ex = create_extractor(); + ex.set_light_mode(true); + + ex.set_blob_allocator(&allocator); + ex.set_workspace_allocator(&allocator); + + // prepare Input blobs + for (size_t i = 0; i < layer_count; i++) + { + const ncnn::Layer* layer = layers[i]; + if (layer->type == "ncnnfused") + continue; + + if (layer->type != "Input") + continue; + + ncnn::Input* input = (ncnn::Input*)layer; + + int w = input->w; + int h = input->h; + int c = input->c; + + int dims = 0; + if (w == 0 && h == 0 && c == 0) dims = 0; + if (w != 0 && h == 0 && c == 0) dims = 1; + if (w != 0 && h != 0 && c == 0) dims = 2; + if (w != 0 && h != 0 && c != 0) dims = 3; + + if (dims == 0) + { + fprintf(stderr, "Input layer %s without shape info, estimate_memory_footprint skipped\n", layer->name.c_str()); + return -1; + } + + ncnn::Mat m; + if (dims == 1) m.create(w, 4u, &allocator); + if (dims == 2) m.create(w, h, 4u, &allocator); + if (dims == 3) m.create(w, h, c, 4u, &allocator); + + ex.input(layer->tops[0], m); + + fprintf(stderr, "input = %s\n", blobs[layer->tops[0]].name.c_str()); + } + + // find output blobs and do inference + std::vector<ncnn::Mat> outputs; + for (size_t i = 0; i < blob_count; i++) + { + const ncnn::Blob& blob = blobs[i]; + + if (blob.producer == -1 || blob.consumer != -1) + continue; + + if (layers[blob.producer]->type == "ncnnfused") + continue; + + // treat blob without any consumers as output + ncnn::Mat m; + ex.extract(int(i), m); + outputs.push_back(m); + + fprintf(stderr, "extract = %s\n", blob.name.c_str()); + } + + fprintf(stderr, "estimated memory footprint = %.2f KB = %.2f MB\n", allocator.memory_footprint / 1024.f, allocator.memory_footprint / 1024.f / 1024.f); + + return 0; +} + +int ModelWriter::fprintf_param_int_array(int id, const ncnn::Mat& m, FILE* pp) +{ + const int count = m.w; + const int* ptr = m; + + fprintf(pp, " -%d=%d", 23300 + id, count); + for (int i = 0; i < count; i++) + { + fprintf(pp, ",%d", ptr[i]); + } + + return 0; +} + +int ModelWriter::fprintf_param_float_array(int id, const ncnn::Mat& m, FILE* pp) +{ + const int count = m.w; + const float* ptr = m; + + fprintf(pp, " -%d=%d", 23300 + id, count); + for (int i = 0; i < count; i++) + { + fprintf(pp, ",%e", ptr[i]); + } + + return 0; +} + +static inline size_t alignSize(size_t sz, int n) +{ + return (sz + n - 1) & -n; +} + +static void replace_denormals_with_zero(float* data, size_t data_length) +{ + const int total = static_cast<int>(data_length); + for (size_t i = 0; i < data_length; ++i) + { + float value = data[i]; + + if (fabsf(value) < 1e-30 && fabsf(value) != 0.f) + { + data[i] = 0.f; + } + } +} + +static float RandomFloat(float a = -1.2f, float b = 1.2f) +{ + float random = ((float)RAND()) / (float)uint64_t(-1); //RAND_MAX; + float diff = b - a; + float r = random * diff; + return a + r; +} + +static void Randomize(ncnn::Mat& m, float a = -1.2f, float b = 1.2f) +{ + if (m.elemsize == 4) + { + for (size_t i = 0; i < m.total(); i++) + { + m[i] = RandomFloat(a, b); + } + } + else if (m.elemsize == 2) + { + unsigned short* p = m; + for (size_t i = 0; i < m.total(); i++) + { + p[i] = ncnn::float32_to_float16(RandomFloat(a, b)); + } + } + else if (m.elemsize == 1) + { + signed char* p = m; + for (size_t i = 0; i < m.total(); i++) + { + p[i] = (signed char)RandomFloat(-127, 127); + } + } +} + +int ModelWriter::fwrite_weight_tag_data(const ncnn::Mat& data, FILE* bp, float a, float b) +{ + int p0 = ftell(bp); + + ncnn::Mat data_flattened = data.reshape(data.w * data.h * data.d * data.c); + if (gen_random_weight) + Randomize(data_flattened, a, b); + + if (data_flattened.elemsize == 4) + { + if (storage_type == 1) + { + const int tag = 0x01306B47; // fp16 magic + fwrite(&tag, sizeof(int), 1, bp); + ncnn::Mat data_flattened_fp16; + ncnn::cast_float32_to_float16(data_flattened, data_flattened_fp16); + fwrite(data_flattened_fp16.data, data_flattened_fp16.elemsize, data_flattened_fp16.w, bp); + } + else + { + const int tag = 0; // fp32 magic + fwrite(&tag, sizeof(int), 1, bp); + replace_denormals_with_zero(data_flattened, data_flattened.w); + fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp); + } + } + else if (data_flattened.elemsize == 2) + { + const int tag = 0x01306B47; // fp16 magic + fwrite(&tag, sizeof(int), 1, bp); + fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp); + } + else if (data_flattened.elemsize == 1) + { + const int tag = 0x000D4B38; // int8 magic + fwrite(&tag, sizeof(int), 1, bp); + fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp); + } + else + { + fprintf(stderr, "unknown weight data type %d\n", (int)data_flattened.elemsize); + } + + // padding to 32bit align + int nwrite = ftell(bp) - p0; + size_t nalign = alignSize(nwrite, 4); + unsigned char padding[4] = {0x00, 0x00, 0x00, 0x00}; + fwrite(padding, sizeof(unsigned char), nalign - nwrite, bp); + + return 0; +} + +int ModelWriter::fwrite_weight_data(const ncnn::Mat& data, FILE* bp, float a, float b) +{ + int p0 = ftell(bp); + + ncnn::Mat data_flattened = data.reshape(data.w * data.h * data.d * data.c); + if (gen_random_weight) + Randomize(data_flattened, a, b); + + if (data_flattened.elemsize == 4) // fp32 + { + replace_denormals_with_zero(data_flattened, data_flattened.w); + } + + fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp); + + // padding to 32bit align + int nwrite = ftell(bp) - p0; + size_t nalign = alignSize(nwrite, 4); + unsigned char padding[4] = {0x00, 0x00, 0x00, 0x00}; + fwrite(padding, sizeof(unsigned char), nalign - nwrite, bp); + + return 0; +} + +int ModelWriter::save(const char* parampath, const char* binpath) +{ + uint64_t mac = 0; + + FILE* pp = fopen(parampath, "wb"); + FILE* bp = fopen(binpath, "wb"); + + fprintf(pp, "7767517\n"); + + const size_t layer_count = layers.size(); + + int layer_count_fused = 0; + std::set<std::string> blob_names; + for (size_t i = 0; i < layer_count; i++) + { + const ncnn::Layer* layer = layers[i]; + if (layer->type == "ncnnfused") + continue; + + layer_count_fused++; + + size_t bottom_count = layer->bottoms.size(); + for (size_t j = 0; j < bottom_count; j++) + { + int bottom_blob_index = layer->bottoms[j]; + blob_names.insert(blobs[bottom_blob_index].name); + } + + size_t top_count = layer->tops.size(); + for (size_t j = 0; j < top_count; j++) + { + int top_blob_index = layer->tops[j]; + blob_names.insert(blobs[top_blob_index].name); + } + } + + size_t blob_count_fused = blob_names.size(); + + fprintf(pp, "%d %zd\n", layer_count_fused, blob_count_fused); + + for (size_t i = 0; i < layer_count; i++) + { + const ncnn::Layer* layer = layers[i]; + if (layer->type == "ncnnfused") + continue; + + if (cutstart > 0 && i < cutstart) + continue; + + if (cutend > 0 && i > cutend) + continue; + + size_t bottom_count = layer->bottoms.size(); + size_t top_count = layer->tops.size(); + + fprintf(pp, "%-24s %-24s %zd %zd", layer->type.c_str(), layer->name.c_str(), bottom_count, top_count); + + for (size_t j = 0; j < bottom_count; j++) + { + int bottom_blob_index = layer->bottoms[j]; + fprintf(pp, " %s", blobs[bottom_blob_index].name.c_str()); + } + for (size_t j = 0; j < top_count; j++) + { + int top_blob_index = layer->tops[j]; + fprintf(pp, " %s", blobs[top_blob_index].name.c_str()); + } + + // write shape hints + bool shape_ready = true; + for (size_t j = 0; j < top_count; j++) + { + int top_blob_index = layer->tops[j]; + + int dims = blobs[top_blob_index].shape.dims; + if (dims == 0) + { + shape_ready = false; + break; + } + } + if (shape_ready) + { + fprintf(pp, " -23330=%zd", top_count * 4); + for (size_t j = 0; j < top_count; j++) + { + int top_blob_index = layer->tops[j]; + + int dims = blobs[top_blob_index].shape.dims; + int w = blobs[top_blob_index].shape.w; + int h = blobs[top_blob_index].shape.h; + int c = blobs[top_blob_index].shape.c; + + fprintf(pp, ",%d,%d,%d,%d", dims, w, h, c); + } + } + + // custom op + if (layer->typeindex & ncnn::LayerType::CustomBit) + { + ((CustomLayer*)layer)->write_param(pp); + + fprintf(pp, "\n"); + + continue; + } + + ncnn::Layer* layer_default = ncnn::create_layer(layer->typeindex); + + ncnn::ParamDict pd; + layer_default->load_param(pd); + +#define fprintf_param_value(format, phase) \ + { \ + if (op->phase != op_default->phase) fprintf(pp, format, op->phase); \ + } + + if (layer->type == "BatchNorm") + { + ncnn::BatchNorm* op = (ncnn::BatchNorm*)layer; + ncnn::BatchNorm* op_default = (ncnn::BatchNorm*)layer_default; + + fprintf_param_value(" 0=%d", channels) + fprintf_param_value(" 1=%e", eps) + + fwrite_weight_data(op->slope_data, bp); + fwrite_weight_data(op->mean_data, bp); + fwrite_weight_data(op->var_data, bp); + fwrite_weight_data(op->bias_data, bp); + } + else if (layer->type == "Bias") + { + ncnn::Bias* op = (ncnn::Bias*)layer; + ncnn::Bias* op_default = (ncnn::Bias*)layer_default; + + fprintf_param_value(" 0=%d", bias_data_size) + + fwrite_weight_data(op->bias_data, bp); + } + else if (layer->type == "BinaryOp") + { + ncnn::BinaryOp* op = (ncnn::BinaryOp*)layer; + ncnn::BinaryOp* op_default = (ncnn::BinaryOp*)layer_default; + + fprintf_param_value(" 0=%d", op_type) + fprintf_param_value(" 1=%d", with_scalar) + fprintf_param_value(" 2=%e", b) + } + else if (layer->type == "Clip") + { + ncnn::Clip* op = (ncnn::Clip*)layer; + ncnn::Clip* op_default = (ncnn::Clip*)layer_default; + + fprintf_param_value(" 0=%e", min) + fprintf_param_value(" 1=%e", max) + } + else if (layer->type == "Concat") + { + ncnn::Concat* op = (ncnn::Concat*)layer; + ncnn::Concat* op_default = (ncnn::Concat*)layer_default; + + fprintf_param_value(" 0=%d", axis) + } + else if (layer->type == "Convolution") + { + ncnn::Convolution* op = (ncnn::Convolution*)layer; + ncnn::Convolution* op_default = (ncnn::Convolution*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + fprintf_param_value(" 18=%e", pad_value) + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 8=%d", int8_scale_term) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + fprintf_param_value(" 19=%d", dynamic_weight) + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + +#if NCNN_INT8 + // write int8_scale data + if (op->int8_scale_term) + { + fwrite_weight_data(op->weight_data_int8_scales, bp, 90, 100); + fwrite_weight_data(op->bottom_blob_int8_scales, bp, 0.001, 1); + fwrite_weight_data(op->top_blob_int8_scales, bp, 0.001, 1); + } +#endif // NCNN_INT8 + + if (shape_ready) + { + int inc = blobs[layer->bottoms[0]].shape.c; + int outw = blobs[layer->tops[0]].shape.w; + int outh = blobs[layer->tops[0]].shape.h; + int outc = blobs[layer->tops[0]].shape.c; + + mac += (uint64_t)op->kernel_h * op->kernel_w * outw * outh * outc * inc; + } + } + else if (layer->type == "Convolution1D") + { + ncnn::Convolution1D* op = (ncnn::Convolution1D*)layer; + ncnn::Convolution1D* op_default = (ncnn::Convolution1D*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + fprintf_param_value(" 2=%d", dilation_w) + fprintf_param_value(" 3=%d", stride_w) + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + fprintf_param_value(" 18=%e", pad_value) + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inh = blobs[layer->bottoms[0]].shape.h; + int outw = blobs[layer->tops[0]].shape.w; + int outh = blobs[layer->tops[0]].shape.h; + + mac += (uint64_t)op->kernel_w * outw * outh * inh; + } + } + else if (layer->type == "Convolution3D") + { + ncnn::Convolution3D* op = (ncnn::Convolution3D*)layer; + ncnn::Convolution3D* op_default = (ncnn::Convolution3D*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + { + if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind); + } + fprintf_param_value(" 18=%e", pad_value) + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inc = blobs[layer->bottoms[0]].shape.c; + int outw = blobs[layer->tops[0]].shape.w; + int outh = blobs[layer->tops[0]].shape.h; + int outd = blobs[layer->tops[0]].shape.d; + int outc = blobs[layer->tops[0]].shape.c; + + mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * outw * outh * outd * outc * inc; + } + } + else if (layer->type == "ConvolutionDepthWise") + { + ncnn::ConvolutionDepthWise* op = (ncnn::ConvolutionDepthWise*)layer; + ncnn::ConvolutionDepthWise* op_default = (ncnn::ConvolutionDepthWise*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + fprintf_param_value(" 18=%e", pad_value) + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 7=%d", group) + fprintf_param_value(" 8=%d", int8_scale_term) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + fprintf_param_value(" 19=%d", dynamic_weight) + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + +#if NCNN_INT8 + // write int8_scale data + if (op->int8_scale_term == 1 || op->int8_scale_term == 101) + { + op->bottom_blob_int8_scales.w = 1; + } + if (op->int8_scale_term == 2 || op->int8_scale_term == 102) + { + op->weight_data_int8_scales.w = 1; + op->bottom_blob_int8_scales.w = 1; + } + if (op->int8_scale_term > 100) + { + op->top_blob_int8_scales.w = 1; + } + + if (op->int8_scale_term) + { + fwrite_weight_data(op->weight_data_int8_scales, bp, 90, 100); + fwrite_weight_data(op->bottom_blob_int8_scales, bp, 0.001, 1); + fwrite_weight_data(op->top_blob_int8_scales, bp, 0.001, 1); + } +#endif // NCNN_INT8 + + if (shape_ready) + { + int inc = blobs[layer->bottoms[0]].shape.c; + int outw = blobs[layer->tops[0]].shape.w; + int outh = blobs[layer->tops[0]].shape.h; + int outc = blobs[layer->tops[0]].shape.c; + + mac += (uint64_t)op->kernel_h * op->kernel_w * outw * outh * (outc / op->group) * (inc / op->group) * op->group; + } + } + else if (layer->type == "ConvolutionDepthWise1D") + { + ncnn::ConvolutionDepthWise1D* op = (ncnn::ConvolutionDepthWise1D*)layer; + ncnn::ConvolutionDepthWise1D* op_default = (ncnn::ConvolutionDepthWise1D*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + fprintf_param_value(" 2=%d", dilation_w) + fprintf_param_value(" 3=%d", stride_w) + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + fprintf_param_value(" 18=%e", pad_value) + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 7=%d", group) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inh = blobs[layer->bottoms[0]].shape.h; + int outw = blobs[layer->tops[0]].shape.w; + int outh = blobs[layer->tops[0]].shape.h; + + mac += (uint64_t)op->kernel_w * outw * (outh / op->group) * (inh / op->group) * op->group; + } + } + else if (layer->type == "ConvolutionDepthWise3D") + { + ncnn::ConvolutionDepthWise3D* op = (ncnn::ConvolutionDepthWise3D*)layer; + ncnn::ConvolutionDepthWise3D* op_default = (ncnn::ConvolutionDepthWise3D*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + { + if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind); + } + fprintf_param_value(" 18=%e", pad_value) + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 7=%d", group) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inc = blobs[layer->bottoms[0]].shape.c; + int outw = blobs[layer->tops[0]].shape.w; + int outh = blobs[layer->tops[0]].shape.h; + int outd = blobs[layer->tops[0]].shape.d; + int outc = blobs[layer->tops[0]].shape.c; + + mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * outw * outh * outd * (outc / op->group) * (inc / op->group) * op->group; + } + } + else if (layer->type == "CopyTo") + { + ncnn::CopyTo* op = (ncnn::CopyTo*)layer; + ncnn::CopyTo* op_default = (ncnn::CopyTo*)layer_default; + + fprintf_param_value(" 0=%d", woffset) + fprintf_param_value(" 1=%d", hoffset) + fprintf_param_value(" 13=%d", doffset) + fprintf_param_value(" 2=%d", coffset) + { + if (!op->starts.empty()) fprintf_param_int_array(9, op->starts, pp); + } + { + if (!op->axes.empty()) fprintf_param_int_array(11, op->axes, pp); + } + } + else if (layer->type == "Crop") + { + ncnn::Crop* op = (ncnn::Crop*)layer; + ncnn::Crop* op_default = (ncnn::Crop*)layer_default; + + fprintf_param_value(" 0=%d", woffset) + fprintf_param_value(" 1=%d", hoffset) + fprintf_param_value(" 13=%d", doffset) + fprintf_param_value(" 2=%d", coffset) + fprintf_param_value(" 3=%d", outw) + fprintf_param_value(" 4=%d", outh) + fprintf_param_value(" 14=%d", outd) + fprintf_param_value(" 5=%d", outc) + fprintf_param_value(" 6=%d", woffset2) + fprintf_param_value(" 7=%d", hoffset2) + fprintf_param_value(" 15=%d", doffset2) + fprintf_param_value(" 8=%d", coffset2) + { + if (!op->starts.empty()) fprintf_param_int_array(9, op->starts, pp); + } + { + if (!op->ends.empty()) fprintf_param_int_array(10, op->ends, pp); + } + { + if (!op->axes.empty()) fprintf_param_int_array(11, op->axes, pp); + } + } + else if (layer->type == "CumulativeSum") + { + ncnn::CumulativeSum* op = (ncnn::CumulativeSum*)layer; + ncnn::CumulativeSum* op_default = (ncnn::CumulativeSum*)layer_default; + + fprintf_param_value(" 0=%d", axis) + } + else if (layer->type == "Deconvolution") + { + ncnn::Deconvolution* op = (ncnn::Deconvolution*)layer; + ncnn::Deconvolution* op_default = (ncnn::Deconvolution*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + fprintf_param_value(" 18=%d", output_pad_right) + { + if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom); + } + fprintf_param_value(" 20=%d", output_w) + { + if (op->output_h != op->output_w) fprintf(pp, " 21=%d", op->output_h); + } + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inw = blobs[layer->bottoms[0]].shape.w; + int inh = blobs[layer->bottoms[0]].shape.h; + int inc = blobs[layer->bottoms[0]].shape.c; + int outc = blobs[layer->tops[0]].shape.c; + + mac += (uint64_t)op->kernel_h * op->kernel_w * inw * inh * outc * inc; + } + } + else if (layer->type == "Deconvolution1D") + { + ncnn::Deconvolution1D* op = (ncnn::Deconvolution1D*)layer; + ncnn::Deconvolution1D* op_default = (ncnn::Deconvolution1D*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + fprintf_param_value(" 2=%d", dilation_w) + fprintf_param_value(" 3=%d", stride_w) + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + fprintf_param_value(" 18=%d", output_pad_right) + fprintf_param_value(" 20=%d", output_w) + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inw = blobs[layer->bottoms[0]].shape.w; + int inh = blobs[layer->bottoms[0]].shape.h; + int outh = blobs[layer->tops[0]].shape.h; + + mac += (uint64_t)op->kernel_w * inw * outh * inh; + } + } + else if (layer->type == "Deconvolution3D") + { + ncnn::Deconvolution3D* op = (ncnn::Deconvolution3D*)layer; + ncnn::Deconvolution3D* op_default = (ncnn::Deconvolution3D*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + { + if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind); + } + fprintf_param_value(" 18=%d", output_pad_right) + { + if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom); + if (op->output_pad_behind != op->output_pad_right) fprintf(pp, " 20=%d", op->output_pad_behind); + } + fprintf_param_value(" 25=%d", output_w) + { + if (op->output_h != op->output_w) fprintf(pp, " 26=%d", op->output_h); + if (op->output_d != op->output_w) fprintf(pp, " 27=%d", op->output_d); + } + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inw = blobs[layer->bottoms[0]].shape.w; + int inh = blobs[layer->bottoms[0]].shape.h; + int ind = blobs[layer->bottoms[0]].shape.d; + int inc = blobs[layer->bottoms[0]].shape.c; + int outc = blobs[layer->tops[0]].shape.c; + + mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * inw * inh * ind * outc * inc; + } + } + else if (layer->type == "DeconvolutionDepthWise") + { + ncnn::DeconvolutionDepthWise* op = (ncnn::DeconvolutionDepthWise*)layer; + ncnn::DeconvolutionDepthWise* op_default = (ncnn::DeconvolutionDepthWise*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + fprintf_param_value(" 18=%d", output_pad_right) + { + if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom); + } + fprintf_param_value(" 20=%d", output_w) + { + if (op->output_h != op->output_w) fprintf(pp, " 21=%d", op->output_h); + } + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 7=%d", group) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inw = blobs[layer->bottoms[0]].shape.w; + int inh = blobs[layer->bottoms[0]].shape.h; + int inc = blobs[layer->bottoms[0]].shape.c; + int outc = blobs[layer->tops[0]].shape.c; + + mac += (uint64_t)op->kernel_h * op->kernel_w * inw * inh * (outc / op->group) * (inc / op->group) * op->group; + } + } + else if (layer->type == "DeconvolutionDepthWise1D") + { + ncnn::DeconvolutionDepthWise1D* op = (ncnn::DeconvolutionDepthWise1D*)layer; + ncnn::DeconvolutionDepthWise1D* op_default = (ncnn::DeconvolutionDepthWise1D*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + fprintf_param_value(" 2=%d", dilation_w) + fprintf_param_value(" 3=%d", stride_w) + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + fprintf_param_value(" 18=%d", output_pad_right) + fprintf_param_value(" 20=%d", output_w) + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 7=%d", group) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inw = blobs[layer->bottoms[0]].shape.w; + int inh = blobs[layer->bottoms[0]].shape.h; + int outh = blobs[layer->tops[0]].shape.h; + + mac += (uint64_t)op->kernel_w * inw * (outh / op->group) * (inh / op->group) * op->group; + } + } + else if (layer->type == "DeconvolutionDepthWise3D") + { + ncnn::DeconvolutionDepthWise3D* op = (ncnn::DeconvolutionDepthWise3D*)layer; + ncnn::DeconvolutionDepthWise3D* op_default = (ncnn::DeconvolutionDepthWise3D*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + { + if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind); + } + fprintf_param_value(" 18=%d", output_pad_right) + { + if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom); + if (op->output_pad_behind != op->output_pad_right) fprintf(pp, " 20=%d", op->output_pad_behind); + } + fprintf_param_value(" 25=%d", output_w) + { + if (op->output_h != op->output_w) fprintf(pp, " 26=%d", op->output_h); + if (op->output_d != op->output_w) fprintf(pp, " 27=%d", op->output_d); + } + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 7=%d", group) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inw = blobs[layer->bottoms[0]].shape.w; + int inh = blobs[layer->bottoms[0]].shape.h; + int ind = blobs[layer->bottoms[0]].shape.d; + int inc = blobs[layer->bottoms[0]].shape.c; + int outc = blobs[layer->tops[0]].shape.c; + + mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * inw * inh * ind * (outc / op->group) * (inc / op->group) * op->group; + } + } + else if (layer->type == "DeformableConv2D") + { + ncnn::DeformableConv2D* op = (ncnn::DeformableConv2D*)layer; + ncnn::DeformableConv2D* op_default = (ncnn::DeformableConv2D*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + fprintf_param_value(" 5=%d", bias_term) + fprintf_param_value(" 6=%d", weight_data_size) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + + if (shape_ready) + { + int inw = blobs[layer->bottoms[0]].shape.w; + int inh = blobs[layer->bottoms[0]].shape.h; + int inc = blobs[layer->bottoms[0]].shape.c; + int outc = blobs[layer->tops[0]].shape.c; + + mac += (uint64_t)op->kernel_h * op->kernel_w * inw * inh * outc * inc; + } + } + else if (layer->type == "DetectionOutput") + { + ncnn::DetectionOutput* op = (ncnn::DetectionOutput*)layer; + ncnn::DetectionOutput* op_default = (ncnn::DetectionOutput*)layer_default; + + fprintf_param_value(" 0=%d", num_class) + fprintf_param_value(" 1=%e", nms_threshold) + fprintf_param_value(" 2=%d", nms_top_k) + fprintf_param_value(" 3=%d", keep_top_k) + fprintf_param_value(" 4=%e", confidence_threshold) + fprintf_param_value(" 5=%e", variances[0]) + fprintf_param_value(" 6=%e", variances[1]) + fprintf_param_value(" 7=%e", variances[2]) + fprintf_param_value(" 8=%e", variances[3]) + } + else if (layer->type == "Dropout") + { + ncnn::Dropout* op = (ncnn::Dropout*)layer; + ncnn::Dropout* op_default = (ncnn::Dropout*)layer_default; + + fprintf_param_value(" 0=%e", scale) + } + else if (layer->type == "Eltwise") + { + ncnn::Eltwise* op = (ncnn::Eltwise*)layer; + ncnn::Eltwise* op_default = (ncnn::Eltwise*)layer_default; + + fprintf_param_value(" 0=%d", op_type) + { + if (!op->coeffs.empty()) fprintf_param_float_array(1, op->coeffs, pp); + } + } + else if (layer->type == "ELU") + { + ncnn::ELU* op = (ncnn::ELU*)layer; + ncnn::ELU* op_default = (ncnn::ELU*)layer_default; + + fprintf_param_value(" 0=%e", alpha) + } + else if (layer->type == "Embed") + { + ncnn::Embed* op = (ncnn::Embed*)layer; + ncnn::Embed* op_default = (ncnn::Embed*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", input_dim) + fprintf_param_value(" 2=%d", bias_term) + fprintf_param_value(" 3=%d", weight_data_size) + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + } + else if (layer->type == "Exp") + { + ncnn::Exp* op = (ncnn::Exp*)layer; + ncnn::Exp* op_default = (ncnn::Exp*)layer_default; + + fprintf_param_value(" 0=%e", base) + fprintf_param_value(" 1=%e", scale) + fprintf_param_value(" 2=%e", shift) + } + else if (layer->type == "ExpandDims") + { + ncnn::ExpandDims* op = (ncnn::ExpandDims*)layer; + ncnn::ExpandDims* op_default = (ncnn::ExpandDims*)layer_default; + + fprintf_param_value(" 0=%d", expand_w) + fprintf_param_value(" 1=%d", expand_h) + fprintf_param_value(" 11=%d", expand_d) + fprintf_param_value(" 2=%d", expand_c) + { + if (!op->axes.empty()) fprintf_param_int_array(3, op->axes, pp); + } + } + else if (layer->type == "Fold") + { + ncnn::Fold* op = (ncnn::Fold*)layer; + ncnn::Fold* op_default = (ncnn::Fold*)layer_default; + + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + fprintf_param_value(" 20=%d", output_w) + { + if (op->output_h != op->output_w) fprintf(pp, " 21=%d", op->output_h); + } + } + else if (layer->type == "GELU") + { + ncnn::GELU* op = (ncnn::GELU*)layer; + ncnn::GELU* op_default = (ncnn::GELU*)layer_default; + + fprintf_param_value(" 0=%d", fast_gelu) + } + else if (layer->type == "Gemm") + { + ncnn::Gemm* op = (ncnn::Gemm*)layer; + ncnn::Gemm* op_default = (ncnn::Gemm*)layer_default; + + fprintf_param_value(" 0=%e", alpha) + fprintf_param_value(" 1=%e", beta) + fprintf_param_value(" 2=%d", transA) + fprintf_param_value(" 3=%d", transB) + fprintf_param_value(" 4=%d", constantA) + fprintf_param_value(" 5=%d", constantB) + fprintf_param_value(" 6=%d", constantC) + fprintf_param_value(" 7=%d", constantM) + fprintf_param_value(" 8=%d", constantN) + fprintf_param_value(" 9=%d", constantK) + fprintf_param_value(" 10=%d", constant_broadcast_type_C) + fprintf_param_value(" 11=%d", output_N1M) + fprintf_param_value(" 12=%d", output_elempack) + fprintf_param_value(" 13=%d", output_elemtype) + fprintf_param_value(" 14=%d", output_transpose) + fprintf_param_value(" 20=%d", constant_TILE_M) + fprintf_param_value(" 21=%d", constant_TILE_N) + fprintf_param_value(" 22=%d", constant_TILE_K) + } + else if (layer->type == "GLU") + { + ncnn::GLU* op = (ncnn::GLU*)layer; + ncnn::GLU* op_default = (ncnn::GLU*)layer_default; + + fprintf_param_value(" 0=%d", axis) + } + else if (layer->type == "GridSample") + { + ncnn::GridSample* op = (ncnn::GridSample*)layer; + ncnn::GridSample* op_default = (ncnn::GridSample*)layer_default; + + fprintf_param_value(" 0=%d", sample_type) + fprintf_param_value(" 1=%d", padding_mode) + fprintf_param_value(" 2=%d", align_corner) + fprintf_param_value(" 3=%d", permute_fusion) + } + else if (layer->type == "GroupNorm") + { + ncnn::GroupNorm* op = (ncnn::GroupNorm*)layer; + ncnn::GroupNorm* op_default = (ncnn::GroupNorm*)layer_default; + + fprintf_param_value(" 0=%d", group) + fprintf_param_value(" 1=%d", channels) + fprintf_param_value(" 2=%e", eps) + fprintf_param_value(" 3=%d", affine) + + fwrite_weight_data(op->gamma_data, bp); + fwrite_weight_data(op->beta_data, bp); + } + else if (layer->type == "GRU") + { + ncnn::GRU* op = (ncnn::GRU*)layer; + ncnn::GRU* op_default = (ncnn::GRU*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", weight_data_size) + fprintf_param_value(" 2=%d", direction) + + fwrite_weight_tag_data(op->weight_xc_data, bp); + fwrite_weight_tag_data(op->bias_c_data, bp); + fwrite_weight_tag_data(op->weight_hc_data, bp); + } + else if (layer->type == "HardSigmoid") + { + ncnn::HardSigmoid* op = (ncnn::HardSigmoid*)layer; + ncnn::HardSigmoid* op_default = (ncnn::HardSigmoid*)layer_default; + + fprintf_param_value(" 0=%e", alpha) + fprintf_param_value(" 1=%e", beta) + } + else if (layer->type == "HardSwish") + { + ncnn::HardSwish* op = (ncnn::HardSwish*)layer; + ncnn::HardSwish* op_default = (ncnn::HardSwish*)layer_default; + + fprintf_param_value(" 0=%e", alpha) + fprintf_param_value(" 1=%e", beta) + } + else if (layer->type == "InnerProduct") + { + ncnn::InnerProduct* op = (ncnn::InnerProduct*)layer; + ncnn::InnerProduct* op_default = (ncnn::InnerProduct*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", bias_term) + fprintf_param_value(" 2=%d", weight_data_size) + fprintf_param_value(" 8=%d", int8_scale_term) + fprintf_param_value(" 9=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); + } + + fwrite_weight_tag_data(op->weight_data, bp); + fwrite_weight_data(op->bias_data, bp); + +#if NCNN_INT8 + // write int8_scale data + if (op->int8_scale_term) + { + fwrite_weight_data(op->weight_data_int8_scales, bp, 90, 100); + fwrite_weight_data(op->bottom_blob_int8_scales, bp, 0.001, 1); + } +#endif // NCNN_INT8 + + if (shape_ready) + { + int inw = blobs[layer->bottoms[0]].shape.w; + int inh = blobs[layer->bottoms[0]].shape.h; + int inc = blobs[layer->bottoms[0]].shape.c; + int outw = blobs[layer->tops[0]].shape.w; + + mac += (uint64_t)inw * inh * inc * outw; + } + } + else if (layer->type == "Input") + { + ncnn::Input* op = (ncnn::Input*)layer; + ncnn::Input* op_default = (ncnn::Input*)layer_default; + + fprintf_param_value(" 0=%d", w) + fprintf_param_value(" 1=%d", h) + fprintf_param_value(" 2=%d", c) + } + else if (layer->type == "InstanceNorm") + { + ncnn::InstanceNorm* op = (ncnn::InstanceNorm*)layer; + ncnn::InstanceNorm* op_default = (ncnn::InstanceNorm*)layer_default; + + fprintf_param_value(" 0=%d", channels) + fprintf_param_value(" 1=%e", eps) + fprintf_param_value(" 2=%d", affine) + + fwrite_weight_data(op->gamma_data, bp); + fwrite_weight_data(op->beta_data, bp); + } + else if (layer->type == "Interp") + { + ncnn::Interp* op = (ncnn::Interp*)layer; + ncnn::Interp* op_default = (ncnn::Interp*)layer_default; + + fprintf_param_value(" 0=%d", resize_type) + fprintf_param_value(" 1=%e", height_scale) + fprintf_param_value(" 2=%e", width_scale) + fprintf_param_value(" 3=%d", output_height) + fprintf_param_value(" 4=%d", output_width) + fprintf_param_value(" 5=%d", dynamic_target_size) + fprintf_param_value(" 6=%d", align_corner) + } + else if (layer->type == "LayerNorm") + { + ncnn::LayerNorm* op = (ncnn::LayerNorm*)layer; + ncnn::LayerNorm* op_default = (ncnn::LayerNorm*)layer_default; + + fprintf_param_value(" 0=%d", affine_size) + fprintf_param_value(" 1=%e", eps) + fprintf_param_value(" 2=%d", affine) + + fwrite_weight_data(op->gamma_data, bp); + fwrite_weight_data(op->beta_data, bp); + } + else if (layer->type == "Log") + { + ncnn::Log* op = (ncnn::Log*)layer; + ncnn::Log* op_default = (ncnn::Log*)layer_default; + + fprintf_param_value(" 0=%e", base) + fprintf_param_value(" 1=%e", scale) + fprintf_param_value(" 2=%e", shift) + } + else if (layer->type == "LRN") + { + ncnn::LRN* op = (ncnn::LRN*)layer; + ncnn::LRN* op_default = (ncnn::LRN*)layer_default; + + fprintf_param_value(" 0=%d", region_type) + fprintf_param_value(" 1=%d", local_size) + fprintf_param_value(" 2=%e", alpha) + fprintf_param_value(" 3=%e", beta) + fprintf_param_value(" 4=%e", bias) + } + else if (layer->type == "LSTM") + { + ncnn::LSTM* op = (ncnn::LSTM*)layer; + ncnn::LSTM* op_default = (ncnn::LSTM*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", weight_data_size) + fprintf_param_value(" 2=%d", direction) + fprintf_param_value(" 3=%d", hidden_size) + + fwrite_weight_tag_data(op->weight_xc_data, bp); + fwrite_weight_tag_data(op->bias_c_data, bp); + fwrite_weight_tag_data(op->weight_hc_data, bp); + + if (op->num_output != op->hidden_size) + { + fwrite_weight_tag_data(op->weight_hr_data, bp); + } + } + else if (layer->type == "MatMul") + { + ncnn::MatMul* op = (ncnn::MatMul*)layer; + ncnn::MatMul* op_default = (ncnn::MatMul*)layer_default; + + fprintf_param_value(" 0=%d", transB) + } + else if (layer->type == "MemoryData") + { + ncnn::MemoryData* op = (ncnn::MemoryData*)layer; + ncnn::MemoryData* op_default = (ncnn::MemoryData*)layer_default; + + fprintf_param_value(" 0=%d", w) + fprintf_param_value(" 1=%d", h) + fprintf_param_value(" 2=%d", c) + fprintf_param_value(" 11=%d", d) + fwrite_weight_data(op->data, bp); + } + else if (layer->type == "MultiHeadAttention") + { + ncnn::MultiHeadAttention* op = (ncnn::MultiHeadAttention*)layer; + ncnn::MultiHeadAttention* op_default = (ncnn::MultiHeadAttention*)layer_default; + + fprintf_param_value(" 0=%d", embed_dim) + fprintf_param_value(" 1=%d", num_heads) + fprintf_param_value(" 2=%d", weight_data_size) + fprintf_param_value(" 3=%d", kdim) + fprintf_param_value(" 4=%d", vdim) + fprintf_param_value(" 5=%d", attn_mask) + + fwrite_weight_tag_data(op->q_weight_data, bp); + fwrite_weight_data(op->q_bias_data, bp); + fwrite_weight_tag_data(op->k_weight_data, bp); + fwrite_weight_data(op->k_bias_data, bp); + fwrite_weight_tag_data(op->v_weight_data, bp); + fwrite_weight_data(op->v_bias_data, bp); + fwrite_weight_tag_data(op->out_weight_data, bp); + fwrite_weight_data(op->out_bias_data, bp); + } + else if (layer->type == "MVN") + { + ncnn::MVN* op = (ncnn::MVN*)layer; + ncnn::MVN* op_default = (ncnn::MVN*)layer_default; + + fprintf_param_value(" 0=%d", normalize_variance) + fprintf_param_value(" 1=%d", across_channels) + fprintf_param_value(" 2=%e", eps) + } + else if (layer->type == "Normalize") + { + ncnn::Normalize* op = (ncnn::Normalize*)layer; + ncnn::Normalize* op_default = (ncnn::Normalize*)layer_default; + + fprintf_param_value(" 0=%d", across_spatial) + fprintf_param_value(" 1=%d", channel_shared) + fprintf_param_value(" 2=%e", eps) + fprintf_param_value(" 3=%d", scale_data_size) + fprintf_param_value(" 4=%d", across_channel) + fprintf_param_value(" 9=%d", eps_mode) + + fwrite_weight_data(op->scale_data, bp); + } + else if (layer->type == "Padding") + { + ncnn::Padding* op = (ncnn::Padding*)layer; + ncnn::Padding* op_default = (ncnn::Padding*)layer_default; + + fprintf_param_value(" 0=%d", top) + fprintf_param_value(" 1=%d", bottom) + fprintf_param_value(" 2=%d", left) + fprintf_param_value(" 3=%d", right) + fprintf_param_value(" 4=%d", type) + fprintf_param_value(" 5=%e", value) + fprintf_param_value(" 6=%d", per_channel_pad_data_size) + fprintf_param_value(" 7=%d", front) + fprintf_param_value(" 8=%d", behind) + + fwrite_weight_data(op->per_channel_pad_data, bp); + } + else if (layer->type == "Permute") + { + ncnn::Permute* op = (ncnn::Permute*)layer; + ncnn::Permute* op_default = (ncnn::Permute*)layer_default; + + fprintf_param_value(" 0=%d", order_type) + } + else if (layer->type == "PixelShuffle") + { + ncnn::PixelShuffle* op = (ncnn::PixelShuffle*)layer; + ncnn::PixelShuffle* op_default = (ncnn::PixelShuffle*)layer_default; + + fprintf_param_value(" 0=%d", upscale_factor) + fprintf_param_value(" 1=%d", mode) + } + else if (layer->type == "Pooling") + { + ncnn::Pooling* op = (ncnn::Pooling*)layer; + ncnn::Pooling* op_default = (ncnn::Pooling*)layer_default; + + fprintf_param_value(" 0=%d", pooling_type) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + } + fprintf_param_value(" 2=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 12=%d", op->stride_h); + } + fprintf_param_value(" 3=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 13=%d", op->pad_top); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 15=%d", op->pad_bottom); + } + fprintf_param_value(" 4=%d", global_pooling) + fprintf_param_value(" 5=%d", pad_mode) + fprintf_param_value(" 6=%d", avgpool_count_include_pad) + fprintf_param_value(" 7=%d", adaptive_pooling) + fprintf_param_value(" 8=%d", out_w) + { + if (op->out_h != op->out_w) fprintf(pp, " 18=%d", op->out_h); + } + } + else if (layer->type == "Pooling1D") + { + ncnn::Pooling1D* op = (ncnn::Pooling1D*)layer; + ncnn::Pooling1D* op_default = (ncnn::Pooling1D*)layer_default; + + fprintf_param_value(" 0=%d", pooling_type) + fprintf_param_value(" 1=%d", kernel_w) + fprintf_param_value(" 2=%d", stride_w) + fprintf_param_value(" 3=%d", pad_left) + { + if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right); + } + fprintf_param_value(" 4=%d", global_pooling) + fprintf_param_value(" 5=%d", pad_mode) + fprintf_param_value(" 6=%d", avgpool_count_include_pad) + fprintf_param_value(" 7=%d", adaptive_pooling) + fprintf_param_value(" 8=%d", out_w) + } + else if (layer->type == "Pooling3D") + { + ncnn::Pooling3D* op = (ncnn::Pooling3D*)layer; + ncnn::Pooling3D* op_default = (ncnn::Pooling3D*)layer_default; + + fprintf_param_value(" 0=%d", pooling_type) + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); + } + fprintf_param_value(" 2=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 12=%d", op->stride_h); + if (op->stride_d != op->stride_w) fprintf(pp, " 22=%d", op->stride_d); + } + fprintf_param_value(" 3=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 13=%d", op->pad_top); + if (op->pad_front != op->pad_left) fprintf(pp, " 23=%d", op->pad_front); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 15=%d", op->pad_bottom); + } + { + if (op->pad_behind != op->pad_front) fprintf(pp, " 16=%d", op->pad_behind); + } + fprintf_param_value(" 4=%d", global_pooling) + fprintf_param_value(" 5=%d", pad_mode) + fprintf_param_value(" 6=%d", avgpool_count_include_pad) + fprintf_param_value(" 7=%d", adaptive_pooling) + fprintf_param_value(" 8=%d", out_w) + { + if (op->out_h != op->out_w) fprintf(pp, " 18=%d", op->out_h); + if (op->out_d != op->out_w) fprintf(pp, " 28=%d", op->out_d); + } + } + else if (layer->type == "Power") + { + ncnn::Power* op = (ncnn::Power*)layer; + ncnn::Power* op_default = (ncnn::Power*)layer_default; + + fprintf_param_value(" 0=%e", power) + fprintf_param_value(" 1=%e", scale) + fprintf_param_value(" 2=%e", shift) + } + else if (layer->type == "PReLU") + { + ncnn::PReLU* op = (ncnn::PReLU*)layer; + ncnn::PReLU* op_default = (ncnn::PReLU*)layer_default; + + fprintf_param_value(" 0=%d", num_slope) + + fwrite_weight_data(op->slope_data, bp); + } + else if (layer->type == "PriorBox") + { + ncnn::PriorBox* op = (ncnn::PriorBox*)layer; + ncnn::PriorBox* op_default = (ncnn::PriorBox*)layer_default; + + { + if (!op->min_sizes.empty()) fprintf_param_float_array(0, op->min_sizes, pp); + } + { + if (!op->max_sizes.empty()) fprintf_param_float_array(1, op->max_sizes, pp); + } + { + if (!op->aspect_ratios.empty()) fprintf_param_float_array(2, op->aspect_ratios, pp); + } + fprintf_param_value(" 3=%e", variances[0]) + fprintf_param_value(" 4=%e", variances[1]) + fprintf_param_value(" 5=%e", variances[2]) + fprintf_param_value(" 6=%e", variances[3]) + fprintf_param_value(" 7=%d", flip) + fprintf_param_value(" 8=%d", clip) + fprintf_param_value(" 9=%d", image_width) + fprintf_param_value(" 10=%d", image_height) + fprintf_param_value(" 11=%e", step_width) + fprintf_param_value(" 12=%e", step_height) + fprintf_param_value(" 13=%e", offset) + } + else if (layer->type == "Proposal") + { + ncnn::Proposal* op = (ncnn::Proposal*)layer; + ncnn::Proposal* op_default = (ncnn::Proposal*)layer_default; + + fprintf_param_value(" 0=%d", feat_stride) + fprintf_param_value(" 1=%d", base_size) + fprintf_param_value(" 2=%d", pre_nms_topN) + fprintf_param_value(" 3=%d", after_nms_topN) + fprintf_param_value(" 4=%e", nms_thresh) + fprintf_param_value(" 5=%d", min_size) + } + else if (layer->type == "PSROIPooling") + { + ncnn::PSROIPooling* op = (ncnn::PSROIPooling*)layer; + ncnn::PSROIPooling* op_default = (ncnn::PSROIPooling*)layer_default; + + fprintf_param_value(" 0=%d", pooled_width) + fprintf_param_value(" 1=%d", pooled_height) + fprintf_param_value(" 2=%e", spatial_scale) + fprintf_param_value(" 3=%d", output_dim) + } + else if (layer->type == "Quantize") + { + ncnn::Quantize* op = (ncnn::Quantize*)layer; + ncnn::Quantize* op_default = (ncnn::Quantize*)layer_default; + + fprintf_param_value(" 0=%d", scale_data_size) + + fwrite_weight_data(op->scale_data, bp); + } + else if (layer->type == "Reduction") + { + ncnn::Reduction* op = (ncnn::Reduction*)layer; + ncnn::Reduction* op_default = (ncnn::Reduction*)layer_default; + + fprintf_param_value(" 0=%d", operation) + fprintf_param_value(" 1=%d", reduce_all) + fprintf_param_value(" 2=%e", coeff) + { + if (!op->axes.empty()) fprintf_param_int_array(3, op->axes, pp); + } + fprintf_param_value(" 4=%d", keepdims) + + // HACK + if (!op->axes.empty()) + { + int fixbug0 = 1; + fprintf(pp, " 5=%d", fixbug0); + } + } + else if (layer->type == "ReLU") + { + ncnn::ReLU* op = (ncnn::ReLU*)layer; + ncnn::ReLU* op_default = (ncnn::ReLU*)layer_default; + + fprintf_param_value(" 0=%e", slope) + } + else if (layer->type == "Reorg") + { + ncnn::Reorg* op = (ncnn::Reorg*)layer; + ncnn::Reorg* op_default = (ncnn::Reorg*)layer_default; + + fprintf_param_value(" 0=%d", stride) + fprintf_param_value(" 1=%d", mode) + } + else if (layer->type == "Requantize") + { + ncnn::Requantize* op = (ncnn::Requantize*)layer; + ncnn::Requantize* op_default = (ncnn::Requantize*)layer_default; + + fprintf_param_value(" 0=%d", scale_in_data_size) + fprintf_param_value(" 1=%d", scale_out_data_size) + fprintf_param_value(" 2=%d", bias_data_size) + fprintf_param_value(" 3=%d", activation_type) + { + if (!op->activation_params.empty()) fprintf_param_float_array(4, op->activation_params, pp); + } + + fwrite_weight_data(op->scale_in_data, bp); + fwrite_weight_data(op->scale_out_data, bp); + fwrite_weight_data(op->bias_data, bp); + } + else if (layer->type == "Reshape") + { + ncnn::Reshape* op = (ncnn::Reshape*)layer; + ncnn::Reshape* op_default = (ncnn::Reshape*)layer_default; + + fprintf_param_value(" 0=%d", w) + fprintf_param_value(" 1=%d", h) + fprintf_param_value(" 11=%d", d) + fprintf_param_value(" 2=%d", c) + fprintf_param_value(" 3=%d", permute) + } + else if (layer->type == "RNN") + { + ncnn::RNN* op = (ncnn::RNN*)layer; + ncnn::RNN* op_default = (ncnn::RNN*)layer_default; + + fprintf_param_value(" 0=%d", num_output) + fprintf_param_value(" 1=%d", weight_data_size) + fprintf_param_value(" 2=%d", direction) + + fwrite_weight_tag_data(op->weight_xc_data, bp); + fwrite_weight_tag_data(op->bias_c_data, bp); + fwrite_weight_tag_data(op->weight_hc_data, bp); + } + else if (layer->type == "ROIAlign") + { + ncnn::ROIAlign* op = (ncnn::ROIAlign*)layer; + ncnn::ROIAlign* op_default = (ncnn::ROIAlign*)layer_default; + + fprintf_param_value(" 0=%d", pooled_width) + fprintf_param_value(" 1=%d", pooled_height) + fprintf_param_value(" 2=%e", spatial_scale) + fprintf_param_value(" 3=%d", sampling_ratio) + fprintf_param_value(" 4=%d", aligned) + fprintf_param_value(" 5=%d", version) + } + else if (layer->type == "ROIPooling") + { + ncnn::ROIPooling* op = (ncnn::ROIPooling*)layer; + ncnn::ROIPooling* op_default = (ncnn::ROIPooling*)layer_default; + + fprintf_param_value(" 0=%d", pooled_width) + fprintf_param_value(" 1=%d", pooled_height) + fprintf_param_value(" 2=%e", spatial_scale) + } + else if (layer->type == "Scale") + { + ncnn::Scale* op = (ncnn::Scale*)layer; + ncnn::Scale* op_default = (ncnn::Scale*)layer_default; + + fprintf_param_value(" 0=%d", scale_data_size) + fprintf_param_value(" 1=%d", bias_term) + + fwrite_weight_data(op->scale_data, bp); + fwrite_weight_data(op->bias_data, bp); + } + else if (layer->type == "ShuffleChannel") + { + ncnn::ShuffleChannel* op = (ncnn::ShuffleChannel*)layer; + ncnn::ShuffleChannel* op_default = (ncnn::ShuffleChannel*)layer_default; + + fprintf_param_value(" 0=%d", group) + fprintf_param_value(" 1=%d", reverse) + } + else if (layer->type == "Slice") + { + ncnn::Slice* op = (ncnn::Slice*)layer; + ncnn::Slice* op_default = (ncnn::Slice*)layer_default; + + { + if (!op->slices.empty()) fprintf_param_int_array(0, op->slices, pp); + } + fprintf_param_value(" 1=%d", axis) + } + else if (layer->type == "Softmax") + { + ncnn::Softmax* op = (ncnn::Softmax*)layer; + ncnn::Softmax* op_default = (ncnn::Softmax*)layer_default; + + fprintf_param_value(" 0=%d", axis) + + // HACK + if (op->axis != 0) + { + int fixbug0 = 1; + fprintf(pp, " 1=%d", fixbug0); + } + } + else if (layer->type == "Squeeze") + { + ncnn::Squeeze* op = (ncnn::Squeeze*)layer; + ncnn::Squeeze* op_default = (ncnn::Squeeze*)layer_default; + + fprintf_param_value(" 0=%d", squeeze_w) + fprintf_param_value(" 1=%d", squeeze_h) + fprintf_param_value(" 11=%d", squeeze_d) + fprintf_param_value(" 2=%d", squeeze_c) + { + if (!op->axes.empty()) fprintf_param_int_array(3, op->axes, pp); + } + } + else if (layer->type == "Threshold") + { + ncnn::Threshold* op = (ncnn::Threshold*)layer; + ncnn::Threshold* op_default = (ncnn::Threshold*)layer_default; + + fprintf_param_value(" 0=%e", threshold) + } + else if (layer->type == "UnaryOp") + { + ncnn::UnaryOp* op = (ncnn::UnaryOp*)layer; + ncnn::UnaryOp* op_default = (ncnn::UnaryOp*)layer_default; + + fprintf_param_value(" 0=%d", op_type) + } + else if (layer->type == "Unfold") + { + ncnn::Unfold* op = (ncnn::Unfold*)layer; + ncnn::Unfold* op_default = (ncnn::Unfold*)layer_default; + + fprintf_param_value(" 1=%d", kernel_w) + { + if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); + } + fprintf_param_value(" 2=%d", dilation_w) + { + if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); + } + fprintf_param_value(" 3=%d", stride_w) + { + if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); + } + fprintf_param_value(" 4=%d", pad_left) + { + if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); + } + { + if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); + } + { + if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); + } + fprintf_param_value(" 18=%e", pad_value) + } + else if (layer->type == "YoloDetectionOutput") + { + ncnn::YoloDetectionOutput* op = (ncnn::YoloDetectionOutput*)layer; + ncnn::YoloDetectionOutput* op_default = (ncnn::YoloDetectionOutput*)layer_default; + + fprintf_param_value(" 0=%d", num_class) + fprintf_param_value(" 1=%d", num_box) + fprintf_param_value(" 2=%e", confidence_threshold) + fprintf_param_value(" 3=%e", nms_threshold) + { + if (!op->biases.empty()) fprintf_param_float_array(4, op->biases, pp); + } + } + else if (layer->type == "Yolov3DetectionOutput") + { + ncnn::Yolov3DetectionOutput* op = (ncnn::Yolov3DetectionOutput*)layer; + ncnn::Yolov3DetectionOutput* op_default = (ncnn::Yolov3DetectionOutput*)layer_default; + + fprintf_param_value(" 0=%d", num_class) + fprintf_param_value(" 1=%d", num_box) + fprintf_param_value(" 2=%e", confidence_threshold) + fprintf_param_value(" 3=%e", nms_threshold) + { + if (!op->biases.empty()) fprintf_param_float_array(4, op->biases, pp); + } + { + if (!op->mask.empty()) fprintf_param_int_array(5, op->mask, pp); + } + { + if (!op->anchors_scale.empty()) fprintf_param_float_array(6, op->anchors_scale, pp); + } + } + +#undef fprintf_param_value + + fprintf(pp, "\n"); + + delete layer_default; + } + + fclose(pp); + fclose(bp); + + if (mac) + { + fprintf(stderr, "mac = %llu = %.2f M\n", static_cast<long long unsigned>(mac), mac / 1000000.0); + } + + return 0; +} |