1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
|
/* Interprocedural constant propagation
Copyright (C) 2005-2013 Free Software Foundation, Inc.
Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
<mjambor@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Interprocedural constant propagation (IPA-CP).
The goal of this transformation is to
1) discover functions which are always invoked with some arguments with the
same known constant values and modify the functions so that the
subsequent optimizations can take advantage of the knowledge, and
2) partial specialization - create specialized versions of functions
transformed in this way if some parameters are known constants only in
certain contexts but the estimated tradeoff between speedup and cost size
is deemed good.
The algorithm also propagates types and attempts to perform type based
devirtualization. Types are propagated much like constants.
The algorithm basically consists of three stages. In the first, functions
are analyzed one at a time and jump functions are constructed for all known
call-sites. In the second phase, the pass propagates information from the
jump functions across the call to reveal what values are available at what
call sites, performs estimations of effects of known values on functions and
their callees, and finally decides what specialized extra versions should be
created. In the third, the special versions materialize and appropriate
calls are redirected.
The algorithm used is to a certain extent based on "Interprocedural Constant
Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
Cooper, Mary W. Hall, and Ken Kennedy.
First stage - intraprocedural analysis
=======================================
This phase computes jump_function and modification flags.
A jump function for a call-site represents the values passed as an actual
arguments of a given call-site. In principle, there are three types of
values:
Pass through - the caller's formal parameter is passed as an actual
argument, plus an operation on it can be performed.
Constant - a constant is passed as an actual argument.
Unknown - neither of the above.
All jump function types are described in detail in ipa-prop.h, together with
the data structures that represent them and methods of accessing them.
ipcp_generate_summary() is the main function of the first stage.
Second stage - interprocedural analysis
========================================
This stage is itself divided into two phases. In the first, we propagate
known values over the call graph, in the second, we make cloning decisions.
It uses a different algorithm than the original Callahan's paper.
First, we traverse the functions topologically from callers to callees and,
for each strongly connected component (SCC), we propagate constants
according to previously computed jump functions. We also record what known
values depend on other known values and estimate local effects. Finally, we
propagate cumulative information about these effects from dependent values
to those on which they depend.
Second, we again traverse the call graph in the same topological order and
make clones for functions which we know are called with the same values in
all contexts and decide about extra specialized clones of functions just for
some contexts - these decisions are based on both local estimates and
cumulative estimates propagated from callees.
ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
third stage.
Third phase - materialization of clones, call statement updates.
============================================
This stage is currently performed by call graph code (mainly in cgraphunit.c
and tree-inline.c) according to instructions inserted to the call graph by
the second stage. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "target.h"
#include "gimple.h"
#include "cgraph.h"
#include "ipa-prop.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "flags.h"
#include "diagnostic.h"
#include "tree-pretty-print.h"
#include "tree-inline.h"
#include "params.h"
#include "ipa-inline.h"
#include "ipa-utils.h"
struct ipcp_value;
/* Describes a particular source for an IPA-CP value. */
struct ipcp_value_source
{
/* Aggregate offset of the source, negative if the source is scalar value of
the argument itself. */
HOST_WIDE_INT offset;
/* The incoming edge that brought the value. */
struct cgraph_edge *cs;
/* If the jump function that resulted into his value was a pass-through or an
ancestor, this is the ipcp_value of the caller from which the described
value has been derived. Otherwise it is NULL. */
struct ipcp_value *val;
/* Next pointer in a linked list of sources of a value. */
struct ipcp_value_source *next;
/* If the jump function that resulted into his value was a pass-through or an
ancestor, this is the index of the parameter of the caller the jump
function references. */
int index;
};
/* Describes one particular value stored in struct ipcp_lattice. */
struct ipcp_value
{
/* The actual value for the given parameter. This is either an IPA invariant
or a TREE_BINFO describing a type that can be used for
devirtualization. */
tree value;
/* The list of sources from which this value originates. */
struct ipcp_value_source *sources;
/* Next pointers in a linked list of all values in a lattice. */
struct ipcp_value *next;
/* Next pointers in a linked list of values in a strongly connected component
of values. */
struct ipcp_value *scc_next;
/* Next pointers in a linked list of SCCs of values sorted topologically
according their sources. */
struct ipcp_value *topo_next;
/* A specialized node created for this value, NULL if none has been (so far)
created. */
struct cgraph_node *spec_node;
/* Depth first search number and low link for topological sorting of
values. */
int dfs, low_link;
/* Time benefit and size cost that specializing the function for this value
would bring about in this function alone. */
int local_time_benefit, local_size_cost;
/* Time benefit and size cost that specializing the function for this value
can bring about in it's callees (transitively). */
int prop_time_benefit, prop_size_cost;
/* True if this valye is currently on the topo-sort stack. */
bool on_stack;
};
/* Lattice describing potential values of a formal parameter of a function, or
a part of an aggreagate. TOP is represented by a lattice with zero values
and with contains_variable and bottom flags cleared. BOTTOM is represented
by a lattice with the bottom flag set. In that case, values and
contains_variable flag should be disregarded. */
struct ipcp_lattice
{
/* The list of known values and types in this lattice. Note that values are
not deallocated if a lattice is set to bottom because there may be value
sources referencing them. */
struct ipcp_value *values;
/* Number of known values and types in this lattice. */
int values_count;
/* The lattice contains a variable component (in addition to values). */
bool contains_variable;
/* The value of the lattice is bottom (i.e. variable and unusable for any
propagation). */
bool bottom;
};
/* Lattice with an offset to describe a part of an aggregate. */
struct ipcp_agg_lattice : public ipcp_lattice
{
/* Offset that is being described by this lattice. */
HOST_WIDE_INT offset;
/* Size so that we don't have to re-compute it every time we traverse the
list. Must correspond to TYPE_SIZE of all lat values. */
HOST_WIDE_INT size;
/* Next element of the linked list. */
struct ipcp_agg_lattice *next;
};
/* Structure containing lattices for a parameter itself and for pieces of
aggregates that are passed in the parameter or by a reference in a parameter
plus some other useful flags. */
struct ipcp_param_lattices
{
/* Lattice describing the value of the parameter itself. */
struct ipcp_lattice itself;
/* Lattices describing aggregate parts. */
struct ipcp_agg_lattice *aggs;
/* Number of aggregate lattices */
int aggs_count;
/* True if aggregate data were passed by reference (as opposed to by
value). */
bool aggs_by_ref;
/* All aggregate lattices contain a variable component (in addition to
values). */
bool aggs_contain_variable;
/* The value of all aggregate lattices is bottom (i.e. variable and unusable
for any propagation). */
bool aggs_bottom;
/* There is a virtual call based on this parameter. */
bool virt_call;
};
/* Allocation pools for values and their sources in ipa-cp. */
alloc_pool ipcp_values_pool;
alloc_pool ipcp_sources_pool;
alloc_pool ipcp_agg_lattice_pool;
/* Maximal count found in program. */
static gcov_type max_count;
/* Original overall size of the program. */
static long overall_size, max_new_size;
/* Head of the linked list of topologically sorted values. */
static struct ipcp_value *values_topo;
/* Return the param lattices structure corresponding to the Ith formal
parameter of the function described by INFO. */
static inline struct ipcp_param_lattices *
ipa_get_parm_lattices (struct ipa_node_params *info, int i)
{
gcc_assert (i >= 0 && i < ipa_get_param_count (info));
gcc_checking_assert (!info->ipcp_orig_node);
gcc_checking_assert (info->lattices);
return &(info->lattices[i]);
}
/* Return the lattice corresponding to the scalar value of the Ith formal
parameter of the function described by INFO. */
static inline struct ipcp_lattice *
ipa_get_scalar_lat (struct ipa_node_params *info, int i)
{
struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
return &plats->itself;
}
/* Return whether LAT is a lattice with a single constant and without an
undefined value. */
static inline bool
ipa_lat_is_single_const (struct ipcp_lattice *lat)
{
if (lat->bottom
|| lat->contains_variable
|| lat->values_count != 1)
return false;
else
return true;
}
/* Return true iff the CS is an edge within a strongly connected component as
computed by ipa_reduced_postorder. */
static inline bool
edge_within_scc (struct cgraph_edge *cs)
{
struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->symbol.aux;
struct ipa_dfs_info *callee_dfs;
struct cgraph_node *callee = cgraph_function_node (cs->callee, NULL);
callee_dfs = (struct ipa_dfs_info *) callee->symbol.aux;
return (caller_dfs
&& callee_dfs
&& caller_dfs->scc_no == callee_dfs->scc_no);
}
/* Print V which is extracted from a value in a lattice to F. */
static void
print_ipcp_constant_value (FILE * f, tree v)
{
if (TREE_CODE (v) == TREE_BINFO)
{
fprintf (f, "BINFO ");
print_generic_expr (f, BINFO_TYPE (v), 0);
}
else if (TREE_CODE (v) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
{
fprintf (f, "& ");
print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
}
else
print_generic_expr (f, v, 0);
}
/* Print a lattice LAT to F. */
static void
print_lattice (FILE * f, struct ipcp_lattice *lat,
bool dump_sources, bool dump_benefits)
{
struct ipcp_value *val;
bool prev = false;
if (lat->bottom)
{
fprintf (f, "BOTTOM\n");
return;
}
if (!lat->values_count && !lat->contains_variable)
{
fprintf (f, "TOP\n");
return;
}
if (lat->contains_variable)
{
fprintf (f, "VARIABLE");
prev = true;
if (dump_benefits)
fprintf (f, "\n");
}
for (val = lat->values; val; val = val->next)
{
if (dump_benefits && prev)
fprintf (f, " ");
else if (!dump_benefits && prev)
fprintf (f, ", ");
else
prev = true;
print_ipcp_constant_value (f, val->value);
if (dump_sources)
{
struct ipcp_value_source *s;
fprintf (f, " [from:");
for (s = val->sources; s; s = s->next)
fprintf (f, " %i(%i)", s->cs->caller->uid,s->cs->frequency);
fprintf (f, "]");
}
if (dump_benefits)
fprintf (f, " [loc_time: %i, loc_size: %i, "
"prop_time: %i, prop_size: %i]\n",
val->local_time_benefit, val->local_size_cost,
val->prop_time_benefit, val->prop_size_cost);
}
if (!dump_benefits)
fprintf (f, "\n");
}
/* Print all ipcp_lattices of all functions to F. */
static void
print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
{
struct cgraph_node *node;
int i, count;
fprintf (f, "\nLattices:\n");
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
{
struct ipa_node_params *info;
info = IPA_NODE_REF (node);
fprintf (f, " Node: %s/%i:\n", cgraph_node_name (node), node->uid);
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
struct ipcp_agg_lattice *aglat;
struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
fprintf (f, " param [%d]: ", i);
print_lattice (f, &plats->itself, dump_sources, dump_benefits);
if (plats->virt_call)
fprintf (f, " virt_call flag set\n");
if (plats->aggs_bottom)
{
fprintf (f, " AGGS BOTTOM\n");
continue;
}
if (plats->aggs_contain_variable)
fprintf (f, " AGGS VARIABLE\n");
for (aglat = plats->aggs; aglat; aglat = aglat->next)
{
fprintf (f, " %soffset " HOST_WIDE_INT_PRINT_DEC ": ",
plats->aggs_by_ref ? "ref " : "", aglat->offset);
print_lattice (f, aglat, dump_sources, dump_benefits);
}
}
}
}
/* Determine whether it is at all technically possible to create clones of NODE
and store this information in the ipa_node_params structure associated
with NODE. */
static void
determine_versionability (struct cgraph_node *node)
{
const char *reason = NULL;
/* There are a number of generic reasons functions cannot be versioned. We
also cannot remove parameters if there are type attributes such as fnspec
present. */
if (node->alias || node->thunk.thunk_p)
reason = "alias or thunk";
else if (!node->local.versionable)
reason = "not a tree_versionable_function";
else if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
reason = "insufficient body availability";
if (reason && dump_file && !node->alias && !node->thunk.thunk_p)
fprintf (dump_file, "Function %s/%i is not versionable, reason: %s.\n",
cgraph_node_name (node), node->uid, reason);
node->local.versionable = (reason == NULL);
}
/* Return true if it is at all technically possible to create clones of a
NODE. */
static bool
ipcp_versionable_function_p (struct cgraph_node *node)
{
return node->local.versionable;
}
/* Structure holding accumulated information about callers of a node. */
struct caller_statistics
{
gcov_type count_sum;
int n_calls, n_hot_calls, freq_sum;
};
/* Initialize fields of STAT to zeroes. */
static inline void
init_caller_stats (struct caller_statistics *stats)
{
stats->count_sum = 0;
stats->n_calls = 0;
stats->n_hot_calls = 0;
stats->freq_sum = 0;
}
/* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
non-thunk incoming edges to NODE. */
static bool
gather_caller_stats (struct cgraph_node *node, void *data)
{
struct caller_statistics *stats = (struct caller_statistics *) data;
struct cgraph_edge *cs;
for (cs = node->callers; cs; cs = cs->next_caller)
if (cs->caller->thunk.thunk_p)
cgraph_for_node_and_aliases (cs->caller, gather_caller_stats,
stats, false);
else
{
stats->count_sum += cs->count;
stats->freq_sum += cs->frequency;
stats->n_calls++;
if (cgraph_maybe_hot_edge_p (cs))
stats->n_hot_calls ++;
}
return false;
}
/* Return true if this NODE is viable candidate for cloning. */
static bool
ipcp_cloning_candidate_p (struct cgraph_node *node)
{
struct caller_statistics stats;
gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
if (!flag_ipa_cp_clone)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; "
"-fipa-cp-clone disabled.\n",
cgraph_node_name (node));
return false;
}
if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; "
"optimizing it for size.\n",
cgraph_node_name (node));
return false;
}
init_caller_stats (&stats);
cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
if (inline_summary (node)->self_size < stats.n_calls)
{
if (dump_file)
fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
cgraph_node_name (node));
return true;
}
/* When profile is available and function is hot, propagate into it even if
calls seems cold; constant propagation can improve function's speed
significantly. */
if (max_count)
{
if (stats.count_sum > node->count * 90 / 100)
{
if (dump_file)
fprintf (dump_file, "Considering %s for cloning; "
"usually called directly.\n",
cgraph_node_name (node));
return true;
}
}
if (!stats.n_hot_calls)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
cgraph_node_name (node));
return false;
}
if (dump_file)
fprintf (dump_file, "Considering %s for cloning.\n",
cgraph_node_name (node));
return true;
}
/* Arrays representing a topological ordering of call graph nodes and a stack
of noes used during constant propagation. */
struct topo_info
{
struct cgraph_node **order;
struct cgraph_node **stack;
int nnodes, stack_top;
};
/* Allocate the arrays in TOPO and topologically sort the nodes into order. */
static void
build_toporder_info (struct topo_info *topo)
{
topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
topo->stack_top = 0;
topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
}
/* Free information about strongly connected components and the arrays in
TOPO. */
static void
free_toporder_info (struct topo_info *topo)
{
ipa_free_postorder_info ();
free (topo->order);
free (topo->stack);
}
/* Add NODE to the stack in TOPO, unless it is already there. */
static inline void
push_node_to_stack (struct topo_info *topo, struct cgraph_node *node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
if (info->node_enqueued)
return;
info->node_enqueued = 1;
topo->stack[topo->stack_top++] = node;
}
/* Pop a node from the stack in TOPO and return it or return NULL if the stack
is empty. */
static struct cgraph_node *
pop_node_from_stack (struct topo_info *topo)
{
if (topo->stack_top)
{
struct cgraph_node *node;
topo->stack_top--;
node = topo->stack[topo->stack_top];
IPA_NODE_REF (node)->node_enqueued = 0;
return node;
}
else
return NULL;
}
/* Set lattice LAT to bottom and return true if it previously was not set as
such. */
static inline bool
set_lattice_to_bottom (struct ipcp_lattice *lat)
{
bool ret = !lat->bottom;
lat->bottom = true;
return ret;
}
/* Mark lattice as containing an unknown value and return true if it previously
was not marked as such. */
static inline bool
set_lattice_contains_variable (struct ipcp_lattice *lat)
{
bool ret = !lat->contains_variable;
lat->contains_variable = true;
return ret;
}
/* Set all aggegate lattices in PLATS to bottom and return true if they were
not previously set as such. */
static inline bool
set_agg_lats_to_bottom (struct ipcp_param_lattices *plats)
{
bool ret = !plats->aggs_bottom;
plats->aggs_bottom = true;
return ret;
}
/* Mark all aggegate lattices in PLATS as containing an unknown value and
return true if they were not previously marked as such. */
static inline bool
set_agg_lats_contain_variable (struct ipcp_param_lattices *plats)
{
bool ret = !plats->aggs_contain_variable;
plats->aggs_contain_variable = true;
return ret;
}
/* Mark bot aggregate and scalar lattices as containing an unknown variable,
return true is any of them has not been marked as such so far. */
static inline bool
set_all_contains_variable (struct ipcp_param_lattices *plats)
{
bool ret = !plats->itself.contains_variable || !plats->aggs_contain_variable;
plats->itself.contains_variable = true;
plats->aggs_contain_variable = true;
return ret;
}
/* Initialize ipcp_lattices. */
static void
initialize_node_lattices (struct cgraph_node *node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
struct cgraph_edge *ie;
bool disable = false, variable = false;
int i;
gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
if (!node->local.local)
{
/* When cloning is allowed, we can assume that externally visible
functions are not called. We will compensate this by cloning
later. */
if (ipcp_versionable_function_p (node)
&& ipcp_cloning_candidate_p (node))
variable = true;
else
disable = true;
}
if (disable || variable)
{
for (i = 0; i < ipa_get_param_count (info) ; i++)
{
struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
if (disable)
{
set_lattice_to_bottom (&plats->itself);
set_agg_lats_to_bottom (plats);
}
else
set_all_contains_variable (plats);
}
if (dump_file && (dump_flags & TDF_DETAILS)
&& !node->alias && !node->thunk.thunk_p)
fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
cgraph_node_name (node), node->uid,
disable ? "BOTTOM" : "VARIABLE");
}
for (ie = node->indirect_calls; ie; ie = ie->next_callee)
if (ie->indirect_info->polymorphic)
{
gcc_checking_assert (ie->indirect_info->param_index >= 0);
ipa_get_parm_lattices (info,
ie->indirect_info->param_index)->virt_call = 1;
}
}
/* Return the result of a (possibly arithmetic) pass through jump function
JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
determined or itself is considered an interprocedural invariant. */
static tree
ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
{
tree restype, res;
if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
return input;
else if (TREE_CODE (input) == TREE_BINFO)
return NULL_TREE;
gcc_checking_assert (is_gimple_ip_invariant (input));
if (TREE_CODE_CLASS (ipa_get_jf_pass_through_operation (jfunc))
== tcc_comparison)
restype = boolean_type_node;
else
restype = TREE_TYPE (input);
res = fold_binary (ipa_get_jf_pass_through_operation (jfunc), restype,
input, ipa_get_jf_pass_through_operand (jfunc));
if (res && !is_gimple_ip_invariant (res))
return NULL_TREE;
return res;
}
/* Return the result of an ancestor jump function JFUNC on the constant value
INPUT. Return NULL_TREE if that cannot be determined. */
static tree
ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
{
if (TREE_CODE (input) == TREE_BINFO)
return get_binfo_at_offset (input,
ipa_get_jf_ancestor_offset (jfunc),
ipa_get_jf_ancestor_type (jfunc));
else if (TREE_CODE (input) == ADDR_EXPR)
{
tree t = TREE_OPERAND (input, 0);
t = build_ref_for_offset (EXPR_LOCATION (t), t,
ipa_get_jf_ancestor_offset (jfunc),
ipa_get_jf_ancestor_type (jfunc), NULL, false);
return build_fold_addr_expr (t);
}
else
return NULL_TREE;
}
/* Extract the acual BINFO being described by JFUNC which must be a known type
jump function. */
static tree
ipa_value_from_known_type_jfunc (struct ipa_jump_func *jfunc)
{
tree base_binfo = TYPE_BINFO (ipa_get_jf_known_type_base_type (jfunc));
if (!base_binfo)
return NULL_TREE;
return get_binfo_at_offset (base_binfo,
ipa_get_jf_known_type_offset (jfunc),
ipa_get_jf_known_type_component_type (jfunc));
}
/* Determine whether JFUNC evaluates to a known value (that is either a
constant or a binfo) and if so, return it. Otherwise return NULL. INFO
describes the caller node so that pass-through jump functions can be
evaluated. */
tree
ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
{
if (jfunc->type == IPA_JF_CONST)
return ipa_get_jf_constant (jfunc);
else if (jfunc->type == IPA_JF_KNOWN_TYPE)
return ipa_value_from_known_type_jfunc (jfunc);
else if (jfunc->type == IPA_JF_PASS_THROUGH
|| jfunc->type == IPA_JF_ANCESTOR)
{
tree input;
int idx;
if (jfunc->type == IPA_JF_PASS_THROUGH)
idx = ipa_get_jf_pass_through_formal_id (jfunc);
else
idx = ipa_get_jf_ancestor_formal_id (jfunc);
if (info->ipcp_orig_node)
input = info->known_vals[idx];
else
{
struct ipcp_lattice *lat;
if (!info->lattices)
{
gcc_checking_assert (!flag_ipa_cp);
return NULL_TREE;
}
lat = ipa_get_scalar_lat (info, idx);
if (!ipa_lat_is_single_const (lat))
return NULL_TREE;
input = lat->values->value;
}
if (!input)
return NULL_TREE;
if (jfunc->type == IPA_JF_PASS_THROUGH)
return ipa_get_jf_pass_through_result (jfunc, input);
else
return ipa_get_jf_ancestor_result (jfunc, input);
}
else
return NULL_TREE;
}
/* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
bottom, not containing a variable component and without any known value at
the same time. */
DEBUG_FUNCTION void
ipcp_verify_propagated_values (void)
{
struct cgraph_node *node;
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
int i, count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
struct ipcp_lattice *lat = ipa_get_scalar_lat (info, i);
if (!lat->bottom
&& !lat->contains_variable
&& lat->values_count == 0)
{
if (dump_file)
{
fprintf (dump_file, "\nIPA lattices after constant "
"propagation:\n");
print_all_lattices (dump_file, true, false);
}
gcc_unreachable ();
}
}
}
}
/* Return true iff X and Y should be considered equal values by IPA-CP. */
static bool
values_equal_for_ipcp_p (tree x, tree y)
{
gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
if (x == y)
return true;
if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO)
return false;
if (TREE_CODE (x) == ADDR_EXPR
&& TREE_CODE (y) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
&& TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
else
return operand_equal_p (x, y, 0);
}
/* Add a new value source to VAL, marking that a value comes from edge CS and
(if the underlying jump function is a pass-through or an ancestor one) from
a caller value SRC_VAL of a caller parameter described by SRC_INDEX. OFFSET
is negative if the source was the scalar value of the parameter itself or
the offset within an aggregate. */
static void
add_value_source (struct ipcp_value *val, struct cgraph_edge *cs,
struct ipcp_value *src_val, int src_idx, HOST_WIDE_INT offset)
{
struct ipcp_value_source *src;
src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool);
src->offset = offset;
src->cs = cs;
src->val = src_val;
src->index = src_idx;
src->next = val->sources;
val->sources = src;
}
/* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
it. CS, SRC_VAL SRC_INDEX and OFFSET are meant for add_value_source and
have the same meaning. */
static bool
add_value_to_lattice (struct ipcp_lattice *lat, tree newval,
struct cgraph_edge *cs, struct ipcp_value *src_val,
int src_idx, HOST_WIDE_INT offset)
{
struct ipcp_value *val;
if (lat->bottom)
return false;
for (val = lat->values; val; val = val->next)
if (values_equal_for_ipcp_p (val->value, newval))
{
if (edge_within_scc (cs))
{
struct ipcp_value_source *s;
for (s = val->sources; s ; s = s->next)
if (s->cs == cs)
break;
if (s)
return false;
}
add_value_source (val, cs, src_val, src_idx, offset);
return false;
}
if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
{
/* We can only free sources, not the values themselves, because sources
of other values in this this SCC might point to them. */
for (val = lat->values; val; val = val->next)
{
while (val->sources)
{
struct ipcp_value_source *src = val->sources;
val->sources = src->next;
pool_free (ipcp_sources_pool, src);
}
}
lat->values = NULL;
return set_lattice_to_bottom (lat);
}
lat->values_count++;
val = (struct ipcp_value *) pool_alloc (ipcp_values_pool);
memset (val, 0, sizeof (*val));
add_value_source (val, cs, src_val, src_idx, offset);
val->value = newval;
val->next = lat->values;
lat->values = val;
return true;
}
/* Like above but passes a special value of offset to distinguish that the
origin is the scalar value of the parameter rather than a part of an
aggregate. */
static inline bool
add_scalar_value_to_lattice (struct ipcp_lattice *lat, tree newval,
struct cgraph_edge *cs,
struct ipcp_value *src_val, int src_idx)
{
return add_value_to_lattice (lat, newval, cs, src_val, src_idx, -1);
}
/* Propagate values through a pass-through jump function JFUNC associated with
edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
is the index of the source parameter. */
static bool
propagate_vals_accross_pass_through (struct cgraph_edge *cs,
struct ipa_jump_func *jfunc,
struct ipcp_lattice *src_lat,
struct ipcp_lattice *dest_lat,
int src_idx)
{
struct ipcp_value *src_val;
bool ret = false;
if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
for (src_val = src_lat->values; src_val; src_val = src_val->next)
ret |= add_scalar_value_to_lattice (dest_lat, src_val->value, cs,
src_val, src_idx);
/* Do not create new values when propagating within an SCC because if there
are arithmetic functions with circular dependencies, there is infinite
number of them and we would just make lattices bottom. */
else if (edge_within_scc (cs))
ret = set_lattice_contains_variable (dest_lat);
else
for (src_val = src_lat->values; src_val; src_val = src_val->next)
{
tree cstval = src_val->value;
if (TREE_CODE (cstval) == TREE_BINFO)
{
ret |= set_lattice_contains_variable (dest_lat);
continue;
}
cstval = ipa_get_jf_pass_through_result (jfunc, cstval);
if (cstval)
ret |= add_scalar_value_to_lattice (dest_lat, cstval, cs, src_val,
src_idx);
else
ret |= set_lattice_contains_variable (dest_lat);
}
return ret;
}
/* Propagate values through an ancestor jump function JFUNC associated with
edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
is the index of the source parameter. */
static bool
propagate_vals_accross_ancestor (struct cgraph_edge *cs,
struct ipa_jump_func *jfunc,
struct ipcp_lattice *src_lat,
struct ipcp_lattice *dest_lat,
int src_idx)
{
struct ipcp_value *src_val;
bool ret = false;
if (edge_within_scc (cs))
return set_lattice_contains_variable (dest_lat);
for (src_val = src_lat->values; src_val; src_val = src_val->next)
{
tree t = ipa_get_jf_ancestor_result (jfunc, src_val->value);
if (t)
ret |= add_scalar_value_to_lattice (dest_lat, t, cs, src_val, src_idx);
else
ret |= set_lattice_contains_variable (dest_lat);
}
return ret;
}
/* Propagate scalar values across jump function JFUNC that is associated with
edge CS and put the values into DEST_LAT. */
static bool
propagate_scalar_accross_jump_function (struct cgraph_edge *cs,
struct ipa_jump_func *jfunc,
struct ipcp_lattice *dest_lat)
{
if (dest_lat->bottom)
return false;
if (jfunc->type == IPA_JF_CONST
|| jfunc->type == IPA_JF_KNOWN_TYPE)
{
tree val;
if (jfunc->type == IPA_JF_KNOWN_TYPE)
{
val = ipa_value_from_known_type_jfunc (jfunc);
if (!val)
return set_lattice_contains_variable (dest_lat);
}
else
val = ipa_get_jf_constant (jfunc);
return add_scalar_value_to_lattice (dest_lat, val, cs, NULL, 0);
}
else if (jfunc->type == IPA_JF_PASS_THROUGH
|| jfunc->type == IPA_JF_ANCESTOR)
{
struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
struct ipcp_lattice *src_lat;
int src_idx;
bool ret;
if (jfunc->type == IPA_JF_PASS_THROUGH)
src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
else
src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
src_lat = ipa_get_scalar_lat (caller_info, src_idx);
if (src_lat->bottom)
return set_lattice_contains_variable (dest_lat);
/* If we would need to clone the caller and cannot, do not propagate. */
if (!ipcp_versionable_function_p (cs->caller)
&& (src_lat->contains_variable
|| (src_lat->values_count > 1)))
return set_lattice_contains_variable (dest_lat);
if (jfunc->type == IPA_JF_PASS_THROUGH)
ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
dest_lat, src_idx);
else
ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
src_idx);
if (src_lat->contains_variable)
ret |= set_lattice_contains_variable (dest_lat);
return ret;
}
/* TODO: We currently do not handle member method pointers in IPA-CP (we only
use it for indirect inlining), we should propagate them too. */
return set_lattice_contains_variable (dest_lat);
}
/* If DEST_PLATS already has aggregate items, check that aggs_by_ref matches
NEW_AGGS_BY_REF and if not, mark all aggs as bottoms and return true (in all
other cases, return false). If there are no aggregate items, set
aggs_by_ref to NEW_AGGS_BY_REF. */
static bool
set_check_aggs_by_ref (struct ipcp_param_lattices *dest_plats,
bool new_aggs_by_ref)
{
if (dest_plats->aggs)
{
if (dest_plats->aggs_by_ref != new_aggs_by_ref)
{
set_agg_lats_to_bottom (dest_plats);
return true;
}
}
else
dest_plats->aggs_by_ref = new_aggs_by_ref;
return false;
}
/* Walk aggregate lattices in DEST_PLATS from ***AGLAT on, until ***aglat is an
already existing lattice for the given OFFSET and SIZE, marking all skipped
lattices as containing variable and checking for overlaps. If there is no
already existing lattice for the OFFSET and VAL_SIZE, create one, initialize
it with offset, size and contains_variable to PRE_EXISTING, and return true,
unless there are too many already. If there are two many, return false. If
there are overlaps turn whole DEST_PLATS to bottom and return false. If any
skipped lattices were newly marked as containing variable, set *CHANGE to
true. */
static bool
merge_agg_lats_step (struct ipcp_param_lattices *dest_plats,
HOST_WIDE_INT offset, HOST_WIDE_INT val_size,
struct ipcp_agg_lattice ***aglat,
bool pre_existing, bool *change)
{
gcc_checking_assert (offset >= 0);
while (**aglat && (**aglat)->offset < offset)
{
if ((**aglat)->offset + (**aglat)->size > offset)
{
set_agg_lats_to_bottom (dest_plats);
return false;
}
*change |= set_lattice_contains_variable (**aglat);
*aglat = &(**aglat)->next;
}
if (**aglat && (**aglat)->offset == offset)
{
if ((**aglat)->size != val_size
|| ((**aglat)->next
&& (**aglat)->next->offset < offset + val_size))
{
set_agg_lats_to_bottom (dest_plats);
return false;
}
gcc_checking_assert (!(**aglat)->next
|| (**aglat)->next->offset >= offset + val_size);
return true;
}
else
{
struct ipcp_agg_lattice *new_al;
if (**aglat && (**aglat)->offset < offset + val_size)
{
set_agg_lats_to_bottom (dest_plats);
return false;
}
if (dest_plats->aggs_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
return false;
dest_plats->aggs_count++;
new_al = (struct ipcp_agg_lattice *) pool_alloc (ipcp_agg_lattice_pool);
memset (new_al, 0, sizeof (*new_al));
new_al->offset = offset;
new_al->size = val_size;
new_al->contains_variable = pre_existing;
new_al->next = **aglat;
**aglat = new_al;
return true;
}
}
/* Set all AGLAT and all other aggregate lattices reachable by next pointers as
containing an unknown value. */
static bool
set_chain_of_aglats_contains_variable (struct ipcp_agg_lattice *aglat)
{
bool ret = false;
while (aglat)
{
ret |= set_lattice_contains_variable (aglat);
aglat = aglat->next;
}
return ret;
}
/* Merge existing aggregate lattices in SRC_PLATS to DEST_PLATS, subtracting
DELTA_OFFSET. CS is the call graph edge and SRC_IDX the index of the source
parameter used for lattice value sources. Return true if DEST_PLATS changed
in any way. */
static bool
merge_aggregate_lattices (struct cgraph_edge *cs,
struct ipcp_param_lattices *dest_plats,
struct ipcp_param_lattices *src_plats,
int src_idx, HOST_WIDE_INT offset_delta)
{
bool pre_existing = dest_plats->aggs != NULL;
struct ipcp_agg_lattice **dst_aglat;
bool ret = false;
if (set_check_aggs_by_ref (dest_plats, src_plats->aggs_by_ref))
return true;
if (src_plats->aggs_bottom)
return set_agg_lats_contain_variable (dest_plats);
if (src_plats->aggs_contain_variable)
ret |= set_agg_lats_contain_variable (dest_plats);
dst_aglat = &dest_plats->aggs;
for (struct ipcp_agg_lattice *src_aglat = src_plats->aggs;
src_aglat;
src_aglat = src_aglat->next)
{
HOST_WIDE_INT new_offset = src_aglat->offset - offset_delta;
if (new_offset < 0)
continue;
if (merge_agg_lats_step (dest_plats, new_offset, src_aglat->size,
&dst_aglat, pre_existing, &ret))
{
struct ipcp_agg_lattice *new_al = *dst_aglat;
dst_aglat = &(*dst_aglat)->next;
if (src_aglat->bottom)
{
ret |= set_lattice_contains_variable (new_al);
continue;
}
if (src_aglat->contains_variable)
ret |= set_lattice_contains_variable (new_al);
for (struct ipcp_value *val = src_aglat->values;
val;
val = val->next)
ret |= add_value_to_lattice (new_al, val->value, cs, val, src_idx,
src_aglat->offset);
}
else if (dest_plats->aggs_bottom)
return true;
}
ret |= set_chain_of_aglats_contains_variable (*dst_aglat);
return ret;
}
/* Determine whether there is anything to propagate FROM SRC_PLATS through a
pass-through JFUNC and if so, whether it has conform and conforms to the
rules about propagating values passed by reference. */
static bool
agg_pass_through_permissible_p (struct ipcp_param_lattices *src_plats,
struct ipa_jump_func *jfunc)
{
return src_plats->aggs
&& (!src_plats->aggs_by_ref
|| ipa_get_jf_pass_through_agg_preserved (jfunc));
}
/* Propagate scalar values across jump function JFUNC that is associated with
edge CS and put the values into DEST_LAT. */
static bool
propagate_aggs_accross_jump_function (struct cgraph_edge *cs,
struct ipa_jump_func *jfunc,
struct ipcp_param_lattices *dest_plats)
{
bool ret = false;
if (dest_plats->aggs_bottom)
return false;
if (jfunc->type == IPA_JF_PASS_THROUGH
&& ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
{
struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
struct ipcp_param_lattices *src_plats;
src_plats = ipa_get_parm_lattices (caller_info, src_idx);
if (agg_pass_through_permissible_p (src_plats, jfunc))
{
/* Currently we do not produce clobber aggregate jump
functions, replace with merging when we do. */
gcc_assert (!jfunc->agg.items);
ret |= merge_aggregate_lattices (cs, dest_plats, src_plats,
src_idx, 0);
}
else
ret |= set_agg_lats_contain_variable (dest_plats);
}
else if (jfunc->type == IPA_JF_ANCESTOR
&& ipa_get_jf_ancestor_agg_preserved (jfunc))
{
struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
struct ipcp_param_lattices *src_plats;
src_plats = ipa_get_parm_lattices (caller_info, src_idx);
if (src_plats->aggs && src_plats->aggs_by_ref)
{
/* Currently we do not produce clobber aggregate jump
functions, replace with merging when we do. */
gcc_assert (!jfunc->agg.items);
ret |= merge_aggregate_lattices (cs, dest_plats, src_plats, src_idx,
ipa_get_jf_ancestor_offset (jfunc));
}
else if (!src_plats->aggs_by_ref)
ret |= set_agg_lats_to_bottom (dest_plats);
else
ret |= set_agg_lats_contain_variable (dest_plats);
}
else if (jfunc->agg.items)
{
bool pre_existing = dest_plats->aggs != NULL;
struct ipcp_agg_lattice **aglat = &dest_plats->aggs;
struct ipa_agg_jf_item *item;
int i;
if (set_check_aggs_by_ref (dest_plats, jfunc->agg.by_ref))
return true;
FOR_EACH_VEC_ELT (*jfunc->agg.items, i, item)
{
HOST_WIDE_INT val_size;
if (item->offset < 0)
continue;
gcc_checking_assert (is_gimple_ip_invariant (item->value));
val_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (item->value)), 1);
if (merge_agg_lats_step (dest_plats, item->offset, val_size,
&aglat, pre_existing, &ret))
{
ret |= add_value_to_lattice (*aglat, item->value, cs, NULL, 0, 0);
aglat = &(*aglat)->next;
}
else if (dest_plats->aggs_bottom)
return true;
}
ret |= set_chain_of_aglats_contains_variable (*aglat);
}
else
ret |= set_agg_lats_contain_variable (dest_plats);
return ret;
}
/* Propagate constants from the caller to the callee of CS. INFO describes the
caller. */
static bool
propagate_constants_accross_call (struct cgraph_edge *cs)
{
struct ipa_node_params *callee_info;
enum availability availability;
struct cgraph_node *callee, *alias_or_thunk;
struct ipa_edge_args *args;
bool ret = false;
int i, args_count, parms_count;
callee = cgraph_function_node (cs->callee, &availability);
if (!callee->analyzed)
return false;
gcc_checking_assert (cgraph_function_with_gimple_body_p (callee));
callee_info = IPA_NODE_REF (callee);
args = IPA_EDGE_REF (cs);
args_count = ipa_get_cs_argument_count (args);
parms_count = ipa_get_param_count (callee_info);
/* If this call goes through a thunk we must not propagate to the first (0th)
parameter. However, we might need to uncover a thunk from below a series
of aliases first. */
alias_or_thunk = cs->callee;
while (alias_or_thunk->alias)
alias_or_thunk = cgraph_alias_aliased_node (alias_or_thunk);
if (alias_or_thunk->thunk.thunk_p)
{
ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info,
0));
i = 1;
}
else
i = 0;
for (; (i < args_count) && (i < parms_count); i++)
{
struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
struct ipcp_param_lattices *dest_plats;
dest_plats = ipa_get_parm_lattices (callee_info, i);
if (availability == AVAIL_OVERWRITABLE)
ret |= set_all_contains_variable (dest_plats);
else
{
ret |= propagate_scalar_accross_jump_function (cs, jump_func,
&dest_plats->itself);
ret |= propagate_aggs_accross_jump_function (cs, jump_func,
dest_plats);
}
}
for (; i < parms_count; i++)
ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info, i));
return ret;
}
/* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
(which can contain both constants and binfos), KNOWN_BINFOS, KNOWN_AGGS or
AGG_REPS return the destination. The latter three can be NULL. If AGG_REPS
is not NULL, KNOWN_AGGS is ignored. */
static tree
ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
vec<tree> known_vals,
vec<tree> known_binfos,
vec<ipa_agg_jump_function_p> known_aggs,
struct ipa_agg_replacement_value *agg_reps)
{
int param_index = ie->indirect_info->param_index;
HOST_WIDE_INT token, anc_offset;
tree otr_type;
tree t;
if (param_index == -1)
return NULL_TREE;
if (!ie->indirect_info->polymorphic)
{
tree t;
if (ie->indirect_info->agg_contents)
{
if (agg_reps)
{
t = NULL;
while (agg_reps)
{
if (agg_reps->index == param_index
&& agg_reps->offset == ie->indirect_info->offset)
{
t = agg_reps->value;
break;
}
agg_reps = agg_reps->next;
}
}
else if (known_aggs.length () > (unsigned int) param_index)
{
struct ipa_agg_jump_function *agg;
agg = known_aggs[param_index];
t = ipa_find_agg_cst_for_param (agg, ie->indirect_info->offset,
ie->indirect_info->by_ref);
}
else
t = NULL;
}
else
t = (known_vals.length () > (unsigned int) param_index
? known_vals[param_index] : NULL);
if (t &&
TREE_CODE (t) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
return TREE_OPERAND (t, 0);
else
return NULL_TREE;
}
gcc_assert (!ie->indirect_info->agg_contents);
token = ie->indirect_info->otr_token;
anc_offset = ie->indirect_info->offset;
otr_type = ie->indirect_info->otr_type;
t = known_vals[param_index];
if (!t && known_binfos.length () > (unsigned int) param_index)
t = known_binfos[param_index];
if (!t)
return NULL_TREE;
if (TREE_CODE (t) != TREE_BINFO)
{
tree binfo;
binfo = gimple_extract_devirt_binfo_from_cst (t);
if (!binfo)
return NULL_TREE;
binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
if (!binfo)
return NULL_TREE;
return gimple_get_virt_method_for_binfo (token, binfo);
}
else
{
tree binfo;
binfo = get_binfo_at_offset (t, anc_offset, otr_type);
if (!binfo)
return NULL_TREE;
return gimple_get_virt_method_for_binfo (token, binfo);
}
}
/* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
(which can contain both constants and binfos), KNOWN_BINFOS (which can be
NULL) or KNOWN_AGGS (which also can be NULL) return the destination. */
tree
ipa_get_indirect_edge_target (struct cgraph_edge *ie,
vec<tree> known_vals,
vec<tree> known_binfos,
vec<ipa_agg_jump_function_p> known_aggs)
{
return ipa_get_indirect_edge_target_1 (ie, known_vals, known_binfos,
known_aggs, NULL);
}
/* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
and KNOWN_BINFOS. */
static int
devirtualization_time_bonus (struct cgraph_node *node,
vec<tree> known_csts,
vec<tree> known_binfos,
vec<ipa_agg_jump_function_p> known_aggs)
{
struct cgraph_edge *ie;
int res = 0;
for (ie = node->indirect_calls; ie; ie = ie->next_callee)
{
struct cgraph_node *callee;
struct inline_summary *isummary;
tree target;
target = ipa_get_indirect_edge_target (ie, known_csts, known_binfos,
known_aggs);
if (!target)
continue;
/* Only bare minimum benefit for clearly un-inlineable targets. */
res += 1;
callee = cgraph_get_node (target);
if (!callee || !callee->analyzed)
continue;
isummary = inline_summary (callee);
if (!isummary->inlinable)
continue;
/* FIXME: The values below need re-considering and perhaps also
integrating into the cost metrics, at lest in some very basic way. */
if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
res += 31;
else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
res += 15;
else if (isummary->size <= MAX_INLINE_INSNS_AUTO
|| DECL_DECLARED_INLINE_P (callee->symbol.decl))
res += 7;
}
return res;
}
/* Return time bonus incurred because of HINTS. */
static int
hint_time_bonus (inline_hints hints)
{
int result = 0;
if (hints & (INLINE_HINT_loop_iterations | INLINE_HINT_loop_stride))
result += PARAM_VALUE (PARAM_IPA_CP_LOOP_HINT_BONUS);
if (hints & INLINE_HINT_array_index)
result += PARAM_VALUE (PARAM_IPA_CP_ARRAY_INDEX_HINT_BONUS);
return result;
}
/* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
and SIZE_COST and with the sum of frequencies of incoming edges to the
potential new clone in FREQUENCIES. */
static bool
good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
int freq_sum, gcov_type count_sum, int size_cost)
{
if (time_benefit == 0
|| !flag_ipa_cp_clone
|| !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
return false;
gcc_assert (size_cost > 0);
if (max_count)
{
int factor = (count_sum * 1000) / max_count;
HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * factor)
/ size_cost);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
"size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
") -> evaluation: " HOST_WIDEST_INT_PRINT_DEC
", threshold: %i\n",
time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
evaluation, PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
}
else
{
HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * freq_sum)
/ size_cost);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
"size: %i, freq_sum: %i) -> evaluation: "
HOST_WIDEST_INT_PRINT_DEC ", threshold: %i\n",
time_benefit, size_cost, freq_sum, evaluation,
PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
}
}
/* Return all context independent values from aggregate lattices in PLATS in a
vector. Return NULL if there are none. */
static vec<ipa_agg_jf_item_t, va_gc> *
context_independent_aggregate_values (struct ipcp_param_lattices *plats)
{
vec<ipa_agg_jf_item_t, va_gc> *res = NULL;
if (plats->aggs_bottom
|| plats->aggs_contain_variable
|| plats->aggs_count == 0)
return NULL;
for (struct ipcp_agg_lattice *aglat = plats->aggs;
aglat;
aglat = aglat->next)
if (ipa_lat_is_single_const (aglat))
{
struct ipa_agg_jf_item item;
item.offset = aglat->offset;
item.value = aglat->values->value;
vec_safe_push (res, item);
}
return res;
}
/* Allocate KNOWN_CSTS, KNOWN_BINFOS and, if non-NULL, KNOWN_AGGS and populate
them with values of parameters that are known independent of the context.
INFO describes the function. If REMOVABLE_PARAMS_COST is non-NULL, the
movement cost of all removable parameters will be stored in it. */
static bool
gather_context_independent_values (struct ipa_node_params *info,
vec<tree> *known_csts,
vec<tree> *known_binfos,
vec<ipa_agg_jump_function_t> *known_aggs,
int *removable_params_cost)
{
int i, count = ipa_get_param_count (info);
bool ret = false;
known_csts->create (0);
known_binfos->create (0);
known_csts->safe_grow_cleared (count);
known_binfos->safe_grow_cleared (count);
if (known_aggs)
{
known_aggs->create (0);
known_aggs->safe_grow_cleared (count);
}
if (removable_params_cost)
*removable_params_cost = 0;
for (i = 0; i < count ; i++)
{
struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
struct ipcp_lattice *lat = &plats->itself;
if (ipa_lat_is_single_const (lat))
{
struct ipcp_value *val = lat->values;
if (TREE_CODE (val->value) != TREE_BINFO)
{
(*known_csts)[i] = val->value;
if (removable_params_cost)
*removable_params_cost
+= estimate_move_cost (TREE_TYPE (val->value));
ret = true;
}
else if (plats->virt_call)
{
(*known_binfos)[i] = val->value;
ret = true;
}
else if (removable_params_cost
&& !ipa_is_param_used (info, i))
*removable_params_cost
+= estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
}
else if (removable_params_cost
&& !ipa_is_param_used (info, i))
*removable_params_cost
+= estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
if (known_aggs)
{
vec<ipa_agg_jf_item_t, va_gc> *agg_items;
struct ipa_agg_jump_function *ajf;
agg_items = context_independent_aggregate_values (plats);
ajf = &(*known_aggs)[i];
ajf->items = agg_items;
ajf->by_ref = plats->aggs_by_ref;
ret |= agg_items != NULL;
}
}
return ret;
}
/* The current interface in ipa-inline-analysis requires a pointer vector.
Create it.
FIXME: That interface should be re-worked, this is slightly silly. Still,
I'd like to discuss how to change it first and this demonstrates the
issue. */
static vec<ipa_agg_jump_function_p>
agg_jmp_p_vec_for_t_vec (vec<ipa_agg_jump_function_t> known_aggs)
{
vec<ipa_agg_jump_function_p> ret;
struct ipa_agg_jump_function *ajf;
int i;
ret.create (known_aggs.length ());
FOR_EACH_VEC_ELT (known_aggs, i, ajf)
ret.quick_push (ajf);
return ret;
}
/* Iterate over known values of parameters of NODE and estimate the local
effects in terms of time and size they have. */
static void
estimate_local_effects (struct cgraph_node *node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
int i, count = ipa_get_param_count (info);
vec<tree> known_csts, known_binfos;
vec<ipa_agg_jump_function_t> known_aggs;
vec<ipa_agg_jump_function_p> known_aggs_ptrs;
bool always_const;
int base_time = inline_summary (node)->time;
int removable_params_cost;
if (!count || !ipcp_versionable_function_p (node))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
cgraph_node_name (node), node->uid, base_time);
always_const = gather_context_independent_values (info, &known_csts,
&known_binfos, &known_aggs,
&removable_params_cost);
known_aggs_ptrs = agg_jmp_p_vec_for_t_vec (known_aggs);
if (always_const)
{
struct caller_statistics stats;
inline_hints hints;
int time, size;
init_caller_stats (&stats);
cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
known_aggs_ptrs, &size, &time, &hints);
time -= devirtualization_time_bonus (node, known_csts, known_binfos,
known_aggs_ptrs);
time -= hint_time_bonus (hints);
time -= removable_params_cost;
size -= stats.n_calls * removable_params_cost;
if (dump_file)
fprintf (dump_file, " - context independent values, size: %i, "
"time_benefit: %i\n", size, base_time - time);
if (size <= 0
|| cgraph_will_be_removed_from_program_if_no_direct_calls (node))
{
info->do_clone_for_all_contexts = true;
base_time = time;
if (dump_file)
fprintf (dump_file, " Decided to specialize for all "
"known contexts, code not going to grow.\n");
}
else if (good_cloning_opportunity_p (node, base_time - time,
stats.freq_sum, stats.count_sum,
size))
{
if (size + overall_size <= max_new_size)
{
info->do_clone_for_all_contexts = true;
base_time = time;
overall_size += size;
if (dump_file)
fprintf (dump_file, " Decided to specialize for all "
"known contexts, growth deemed beneficial.\n");
}
else if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Not cloning for all contexts because "
"max_new_size would be reached with %li.\n",
size + overall_size);
}
}
for (i = 0; i < count ; i++)
{
struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
struct ipcp_lattice *lat = &plats->itself;
struct ipcp_value *val;
int emc;
if (lat->bottom
|| !lat->values
|| known_csts[i]
|| known_binfos[i])
continue;
for (val = lat->values; val; val = val->next)
{
int time, size, time_benefit;
inline_hints hints;
if (TREE_CODE (val->value) != TREE_BINFO)
{
known_csts[i] = val->value;
known_binfos[i] = NULL_TREE;
emc = estimate_move_cost (TREE_TYPE (val->value));
}
else if (plats->virt_call)
{
known_csts[i] = NULL_TREE;
known_binfos[i] = val->value;
emc = 0;
}
else
continue;
estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
known_aggs_ptrs, &size, &time,
&hints);
time_benefit = base_time - time
+ devirtualization_time_bonus (node, known_csts, known_binfos,
known_aggs_ptrs)
+ hint_time_bonus (hints)
+ removable_params_cost + emc;
gcc_checking_assert (size >=0);
/* The inliner-heuristics based estimates may think that in certain
contexts some functions do not have any size at all but we want
all specializations to have at least a tiny cost, not least not to
divide by zero. */
if (size == 0)
size = 1;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " - estimates for value ");
print_ipcp_constant_value (dump_file, val->value);
fprintf (dump_file, " for parameter ");
print_generic_expr (dump_file, ipa_get_param (info, i), 0);
fprintf (dump_file, ": time_benefit: %i, size: %i\n",
time_benefit, size);
}
val->local_time_benefit = time_benefit;
val->local_size_cost = size;
}
known_binfos[i] = NULL_TREE;
known_csts[i] = NULL_TREE;
}
for (i = 0; i < count ; i++)
{
struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
struct ipa_agg_jump_function *ajf;
struct ipcp_agg_lattice *aglat;
if (plats->aggs_bottom || !plats->aggs)
continue;
ajf = &known_aggs[i];
for (aglat = plats->aggs; aglat; aglat = aglat->next)
{
struct ipcp_value *val;
if (aglat->bottom || !aglat->values
/* If the following is true, the one value is in known_aggs. */
|| (!plats->aggs_contain_variable
&& ipa_lat_is_single_const (aglat)))
continue;
for (val = aglat->values; val; val = val->next)
{
int time, size, time_benefit;
struct ipa_agg_jf_item item;
inline_hints hints;
item.offset = aglat->offset;
item.value = val->value;
vec_safe_push (ajf->items, item);
estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
known_aggs_ptrs, &size, &time,
&hints);
time_benefit = base_time - time
+ devirtualization_time_bonus (node, known_csts, known_binfos,
known_aggs_ptrs)
+ hint_time_bonus (hints);
gcc_checking_assert (size >=0);
if (size == 0)
size = 1;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " - estimates for value ");
print_ipcp_constant_value (dump_file, val->value);
fprintf (dump_file, " for parameter ");
print_generic_expr (dump_file, ipa_get_param (info, i), 0);
fprintf (dump_file, "[%soffset: " HOST_WIDE_INT_PRINT_DEC
"]: time_benefit: %i, size: %i\n",
plats->aggs_by_ref ? "ref " : "",
aglat->offset, time_benefit, size);
}
val->local_time_benefit = time_benefit;
val->local_size_cost = size;
ajf->items->pop ();
}
}
}
for (i = 0; i < count ; i++)
vec_free (known_aggs[i].items);
known_csts.release ();
known_binfos.release ();
known_aggs.release ();
known_aggs_ptrs.release ();
}
/* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
topological sort of values. */
static void
add_val_to_toposort (struct ipcp_value *cur_val)
{
static int dfs_counter = 0;
static struct ipcp_value *stack;
struct ipcp_value_source *src;
if (cur_val->dfs)
return;
dfs_counter++;
cur_val->dfs = dfs_counter;
cur_val->low_link = dfs_counter;
cur_val->topo_next = stack;
stack = cur_val;
cur_val->on_stack = true;
for (src = cur_val->sources; src; src = src->next)
if (src->val)
{
if (src->val->dfs == 0)
{
add_val_to_toposort (src->val);
if (src->val->low_link < cur_val->low_link)
cur_val->low_link = src->val->low_link;
}
else if (src->val->on_stack
&& src->val->dfs < cur_val->low_link)
cur_val->low_link = src->val->dfs;
}
if (cur_val->dfs == cur_val->low_link)
{
struct ipcp_value *v, *scc_list = NULL;
do
{
v = stack;
stack = v->topo_next;
v->on_stack = false;
v->scc_next = scc_list;
scc_list = v;
}
while (v != cur_val);
cur_val->topo_next = values_topo;
values_topo = cur_val;
}
}
/* Add all values in lattices associated with NODE to the topological sort if
they are not there yet. */
static void
add_all_node_vals_to_toposort (struct cgraph_node *node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
int i, count = ipa_get_param_count (info);
for (i = 0; i < count ; i++)
{
struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
struct ipcp_lattice *lat = &plats->itself;
struct ipcp_agg_lattice *aglat;
struct ipcp_value *val;
if (!lat->bottom)
for (val = lat->values; val; val = val->next)
add_val_to_toposort (val);
if (!plats->aggs_bottom)
for (aglat = plats->aggs; aglat; aglat = aglat->next)
if (!aglat->bottom)
for (val = aglat->values; val; val = val->next)
add_val_to_toposort (val);
}
}
/* One pass of constants propagation along the call graph edges, from callers
to callees (requires topological ordering in TOPO), iterate over strongly
connected components. */
static void
propagate_constants_topo (struct topo_info *topo)
{
int i;
for (i = topo->nnodes - 1; i >= 0; i--)
{
struct cgraph_node *v, *node = topo->order[i];
struct ipa_dfs_info *node_dfs_info;
if (!cgraph_function_with_gimple_body_p (node))
continue;
node_dfs_info = (struct ipa_dfs_info *) node->symbol.aux;
/* First, iteratively propagate within the strongly connected component
until all lattices stabilize. */
v = node_dfs_info->next_cycle;
while (v)
{
push_node_to_stack (topo, v);
v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle;
}
v = node;
while (v)
{
struct cgraph_edge *cs;
for (cs = v->callees; cs; cs = cs->next_callee)
if (edge_within_scc (cs)
&& propagate_constants_accross_call (cs))
push_node_to_stack (topo, cs->callee);
v = pop_node_from_stack (topo);
}
/* Afterwards, propagate along edges leading out of the SCC, calculates
the local effects of the discovered constants and all valid values to
their topological sort. */
v = node;
while (v)
{
struct cgraph_edge *cs;
estimate_local_effects (v);
add_all_node_vals_to_toposort (v);
for (cs = v->callees; cs; cs = cs->next_callee)
if (!edge_within_scc (cs))
propagate_constants_accross_call (cs);
v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle;
}
}
}
/* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
the bigger one if otherwise. */
static int
safe_add (int a, int b)
{
if (a > INT_MAX/2 || b > INT_MAX/2)
return a > b ? a : b;
else
return a + b;
}
/* Propagate the estimated effects of individual values along the topological
from the dependent values to those they depend on. */
static void
propagate_effects (void)
{
struct ipcp_value *base;
for (base = values_topo; base; base = base->topo_next)
{
struct ipcp_value_source *src;
struct ipcp_value *val;
int time = 0, size = 0;
for (val = base; val; val = val->scc_next)
{
time = safe_add (time,
val->local_time_benefit + val->prop_time_benefit);
size = safe_add (size, val->local_size_cost + val->prop_size_cost);
}
for (val = base; val; val = val->scc_next)
for (src = val->sources; src; src = src->next)
if (src->val
&& cgraph_maybe_hot_edge_p (src->cs))
{
src->val->prop_time_benefit = safe_add (time,
src->val->prop_time_benefit);
src->val->prop_size_cost = safe_add (size,
src->val->prop_size_cost);
}
}
}
/* Propagate constants, binfos and their effects from the summaries
interprocedurally. */
static void
ipcp_propagate_stage (struct topo_info *topo)
{
struct cgraph_node *node;
if (dump_file)
fprintf (dump_file, "\n Propagating constants:\n\n");
if (in_lto_p)
ipa_update_after_lto_read ();
FOR_EACH_DEFINED_FUNCTION (node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
determine_versionability (node);
if (cgraph_function_with_gimple_body_p (node))
{
info->lattices = XCNEWVEC (struct ipcp_param_lattices,
ipa_get_param_count (info));
initialize_node_lattices (node);
}
if (node->count > max_count)
max_count = node->count;
overall_size += inline_summary (node)->self_size;
}
max_new_size = overall_size;
if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
if (dump_file)
fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
overall_size, max_new_size);
propagate_constants_topo (topo);
#ifdef ENABLE_CHECKING
ipcp_verify_propagated_values ();
#endif
propagate_effects ();
if (dump_file)
{
fprintf (dump_file, "\nIPA lattices after all propagation:\n");
print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
}
}
/* Discover newly direct outgoing edges from NODE which is a new clone with
known KNOWN_VALS and make them direct. */
static void
ipcp_discover_new_direct_edges (struct cgraph_node *node,
vec<tree> known_vals,
struct ipa_agg_replacement_value *aggvals)
{
struct cgraph_edge *ie, *next_ie;
bool found = false;
for (ie = node->indirect_calls; ie; ie = next_ie)
{
tree target;
next_ie = ie->next_callee;
target = ipa_get_indirect_edge_target_1 (ie, known_vals, vNULL, vNULL,
aggvals);
if (target)
{
ipa_make_edge_direct_to_target (ie, target);
found = true;
}
}
/* Turning calls to direct calls will improve overall summary. */
if (found)
inline_update_overall_summary (node);
}
/* Vector of pointers which for linked lists of clones of an original crgaph
edge. */
static vec<cgraph_edge_p> next_edge_clone;
static inline void
grow_next_edge_clone_vector (void)
{
if (next_edge_clone.length ()
<= (unsigned) cgraph_edge_max_uid)
next_edge_clone.safe_grow_cleared (cgraph_edge_max_uid + 1);
}
/* Edge duplication hook to grow the appropriate linked list in
next_edge_clone. */
static void
ipcp_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
__attribute__((unused)) void *data)
{
grow_next_edge_clone_vector ();
next_edge_clone[dst->uid] = next_edge_clone[src->uid];
next_edge_clone[src->uid] = dst;
}
/* See if NODE is a clone with a known aggregate value at a given OFFSET of a
parameter with the given INDEX. */
static tree
get_clone_agg_value (struct cgraph_node *node, HOST_WIDEST_INT offset,
int index)
{
struct ipa_agg_replacement_value *aggval;
aggval = ipa_get_agg_replacements_for_node (node);
while (aggval)
{
if (aggval->offset == offset
&& aggval->index == index)
return aggval->value;
aggval = aggval->next;
}
return NULL_TREE;
}
/* Return true if edge CS does bring about the value described by SRC. */
static bool
cgraph_edge_brings_value_p (struct cgraph_edge *cs,
struct ipcp_value_source *src)
{
struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
struct ipa_node_params *dst_info = IPA_NODE_REF (cs->callee);
if ((dst_info->ipcp_orig_node && !dst_info->is_all_contexts_clone)
|| caller_info->node_dead)
return false;
if (!src->val)
return true;
if (caller_info->ipcp_orig_node)
{
tree t;
if (src->offset == -1)
t = caller_info->known_vals[src->index];
else
t = get_clone_agg_value (cs->caller, src->offset, src->index);
return (t != NULL_TREE
&& values_equal_for_ipcp_p (src->val->value, t));
}
else
{
struct ipcp_agg_lattice *aglat;
struct ipcp_param_lattices *plats = ipa_get_parm_lattices (caller_info,
src->index);
if (src->offset == -1)
return (ipa_lat_is_single_const (&plats->itself)
&& values_equal_for_ipcp_p (src->val->value,
plats->itself.values->value));
else
{
if (plats->aggs_bottom || plats->aggs_contain_variable)
return false;
for (aglat = plats->aggs; aglat; aglat = aglat->next)
if (aglat->offset == src->offset)
return (ipa_lat_is_single_const (aglat)
&& values_equal_for_ipcp_p (src->val->value,
aglat->values->value));
}
return false;
}
}
/* Get the next clone in the linked list of clones of an edge. */
static inline struct cgraph_edge *
get_next_cgraph_edge_clone (struct cgraph_edge *cs)
{
return next_edge_clone[cs->uid];
}
/* Given VAL, iterate over all its sources and if they still hold, add their
edge frequency and their number into *FREQUENCY and *CALLER_COUNT
respectively. */
static bool
get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum,
gcov_type *count_sum, int *caller_count)
{
struct ipcp_value_source *src;
int freq = 0, count = 0;
gcov_type cnt = 0;
bool hot = false;
for (src = val->sources; src; src = src->next)
{
struct cgraph_edge *cs = src->cs;
while (cs)
{
if (cgraph_edge_brings_value_p (cs, src))
{
count++;
freq += cs->frequency;
cnt += cs->count;
hot |= cgraph_maybe_hot_edge_p (cs);
}
cs = get_next_cgraph_edge_clone (cs);
}
}
*freq_sum = freq;
*count_sum = cnt;
*caller_count = count;
return hot;
}
/* Return a vector of incoming edges that do bring value VAL. It is assumed
their number is known and equal to CALLER_COUNT. */
static vec<cgraph_edge_p>
gather_edges_for_value (struct ipcp_value *val, int caller_count)
{
struct ipcp_value_source *src;
vec<cgraph_edge_p> ret;
ret.create (caller_count);
for (src = val->sources; src; src = src->next)
{
struct cgraph_edge *cs = src->cs;
while (cs)
{
if (cgraph_edge_brings_value_p (cs, src))
ret.quick_push (cs);
cs = get_next_cgraph_edge_clone (cs);
}
}
return ret;
}
/* Construct a replacement map for a know VALUE for a formal parameter PARAM.
Return it or NULL if for some reason it cannot be created. */
static struct ipa_replace_map *
get_replacement_map (tree value, tree parm)
{
tree req_type = TREE_TYPE (parm);
struct ipa_replace_map *replace_map;
if (!useless_type_conversion_p (req_type, TREE_TYPE (value)))
{
if (fold_convertible_p (req_type, value))
value = fold_build1 (NOP_EXPR, req_type, value);
else if (TYPE_SIZE (req_type) == TYPE_SIZE (TREE_TYPE (value)))
value = fold_build1 (VIEW_CONVERT_EXPR, req_type, value);
else
{
if (dump_file)
{
fprintf (dump_file, " const ");
print_generic_expr (dump_file, value, 0);
fprintf (dump_file, " can't be converted to param ");
print_generic_expr (dump_file, parm, 0);
fprintf (dump_file, "\n");
}
return NULL;
}
}
replace_map = ggc_alloc_ipa_replace_map ();
if (dump_file)
{
fprintf (dump_file, " replacing param ");
print_generic_expr (dump_file, parm, 0);
fprintf (dump_file, " with const ");
print_generic_expr (dump_file, value, 0);
fprintf (dump_file, "\n");
}
replace_map->old_tree = parm;
replace_map->new_tree = value;
replace_map->replace_p = true;
replace_map->ref_p = false;
return replace_map;
}
/* Dump new profiling counts */
static void
dump_profile_updates (struct cgraph_node *orig_node,
struct cgraph_node *new_node)
{
struct cgraph_edge *cs;
fprintf (dump_file, " setting count of the specialized node to "
HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
for (cs = new_node->callees; cs ; cs = cs->next_callee)
fprintf (dump_file, " edge to %s has count "
HOST_WIDE_INT_PRINT_DEC "\n",
cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
fprintf (dump_file, " setting count of the original node to "
HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
for (cs = orig_node->callees; cs ; cs = cs->next_callee)
fprintf (dump_file, " edge to %s is left with "
HOST_WIDE_INT_PRINT_DEC "\n",
cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
}
/* After a specialized NEW_NODE version of ORIG_NODE has been created, update
their profile information to reflect this. */
static void
update_profiling_info (struct cgraph_node *orig_node,
struct cgraph_node *new_node)
{
struct cgraph_edge *cs;
struct caller_statistics stats;
gcov_type new_sum, orig_sum;
gcov_type remainder, orig_node_count = orig_node->count;
if (orig_node_count == 0)
return;
init_caller_stats (&stats);
cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false);
orig_sum = stats.count_sum;
init_caller_stats (&stats);
cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false);
new_sum = stats.count_sum;
if (orig_node_count < orig_sum + new_sum)
{
if (dump_file)
fprintf (dump_file, " Problem: node %s/%i has too low count "
HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
"counts is " HOST_WIDE_INT_PRINT_DEC "\n",
cgraph_node_name (orig_node), orig_node->uid,
(HOST_WIDE_INT) orig_node_count,
(HOST_WIDE_INT) (orig_sum + new_sum));
orig_node_count = (orig_sum + new_sum) * 12 / 10;
if (dump_file)
fprintf (dump_file, " proceeding by pretending it was "
HOST_WIDE_INT_PRINT_DEC "\n",
(HOST_WIDE_INT) orig_node_count);
}
new_node->count = new_sum;
remainder = orig_node_count - new_sum;
orig_node->count = remainder;
for (cs = new_node->callees; cs ; cs = cs->next_callee)
if (cs->frequency)
cs->count = apply_probability (cs->count,
GCOV_COMPUTE_SCALE (new_sum,
orig_node_count));
else
cs->count = 0;
for (cs = orig_node->callees; cs ; cs = cs->next_callee)
cs->count = apply_probability (cs->count,
GCOV_COMPUTE_SCALE (remainder,
orig_node_count));
if (dump_file)
dump_profile_updates (orig_node, new_node);
}
/* Update the respective profile of specialized NEW_NODE and the original
ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
have been redirected to the specialized version. */
static void
update_specialized_profile (struct cgraph_node *new_node,
struct cgraph_node *orig_node,
gcov_type redirected_sum)
{
struct cgraph_edge *cs;
gcov_type new_node_count, orig_node_count = orig_node->count;
if (dump_file)
fprintf (dump_file, " the sum of counts of redirected edges is "
HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
if (orig_node_count == 0)
return;
gcc_assert (orig_node_count >= redirected_sum);
new_node_count = new_node->count;
new_node->count += redirected_sum;
orig_node->count -= redirected_sum;
for (cs = new_node->callees; cs ; cs = cs->next_callee)
if (cs->frequency)
cs->count += apply_probability (cs->count,
GCOV_COMPUTE_SCALE (redirected_sum,
new_node_count));
else
cs->count = 0;
for (cs = orig_node->callees; cs ; cs = cs->next_callee)
{
gcov_type dec = apply_probability (cs->count,
GCOV_COMPUTE_SCALE (redirected_sum,
orig_node_count));
if (dec < cs->count)
cs->count -= dec;
else
cs->count = 0;
}
if (dump_file)
dump_profile_updates (orig_node, new_node);
}
/* Create a specialized version of NODE with known constants and types of
parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
static struct cgraph_node *
create_specialized_node (struct cgraph_node *node,
vec<tree> known_vals,
struct ipa_agg_replacement_value *aggvals,
vec<cgraph_edge_p> callers)
{
struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
vec<ipa_replace_map_p, va_gc> *replace_trees = NULL;
struct cgraph_node *new_node;
int i, count = ipa_get_param_count (info);
bitmap args_to_skip;
gcc_assert (!info->ipcp_orig_node);
if (node->local.can_change_signature)
{
args_to_skip = BITMAP_GGC_ALLOC ();
for (i = 0; i < count; i++)
{
tree t = known_vals[i];
if ((t && TREE_CODE (t) != TREE_BINFO)
|| !ipa_is_param_used (info, i))
bitmap_set_bit (args_to_skip, i);
}
}
else
{
args_to_skip = NULL;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " cannot change function signature\n");
}
for (i = 0; i < count ; i++)
{
tree t = known_vals[i];
if (t && TREE_CODE (t) != TREE_BINFO)
{
struct ipa_replace_map *replace_map;
replace_map = get_replacement_map (t, ipa_get_param (info, i));
if (replace_map)
vec_safe_push (replace_trees, replace_map);
}
}
new_node = cgraph_create_virtual_clone (node, callers, replace_trees,
args_to_skip, "constprop");
ipa_set_node_agg_value_chain (new_node, aggvals);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " the new node is %s/%i.\n",
cgraph_node_name (new_node), new_node->uid);
if (aggvals)
ipa_dump_agg_replacement_values (dump_file, aggvals);
}
gcc_checking_assert (ipa_node_params_vector.exists ()
&& (ipa_node_params_vector.length ()
> (unsigned) cgraph_max_uid));
update_profiling_info (node, new_node);
new_info = IPA_NODE_REF (new_node);
new_info->ipcp_orig_node = node;
new_info->known_vals = known_vals;
ipcp_discover_new_direct_edges (new_node, known_vals, aggvals);
callers.release ();
return new_node;
}
/* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
KNOWN_VALS with constants and types that are also known for all of the
CALLERS. */
static void
find_more_scalar_values_for_callers_subset (struct cgraph_node *node,
vec<tree> known_vals,
vec<cgraph_edge_p> callers)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
int i, count = ipa_get_param_count (info);
for (i = 0; i < count ; i++)
{
struct cgraph_edge *cs;
tree newval = NULL_TREE;
int j;
if (ipa_get_scalar_lat (info, i)->bottom || known_vals[i])
continue;
FOR_EACH_VEC_ELT (callers, j, cs)
{
struct ipa_jump_func *jump_func;
tree t;
if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
{
newval = NULL_TREE;
break;
}
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
if (!t
|| (newval
&& !values_equal_for_ipcp_p (t, newval)))
{
newval = NULL_TREE;
break;
}
else
newval = t;
}
if (newval)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " adding an extra known scalar value ");
print_ipcp_constant_value (dump_file, newval);
fprintf (dump_file, " for parameter ");
print_generic_expr (dump_file, ipa_get_param (info, i), 0);
fprintf (dump_file, "\n");
}
known_vals[i] = newval;
}
}
}
/* Go through PLATS and create a vector of values consisting of values and
offsets (minus OFFSET) of lattices that contain only a single value. */
static vec<ipa_agg_jf_item_t>
copy_plats_to_inter (struct ipcp_param_lattices *plats, HOST_WIDE_INT offset)
{
vec<ipa_agg_jf_item_t> res = vNULL;
if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
return vNULL;
for (struct ipcp_agg_lattice *aglat = plats->aggs; aglat; aglat = aglat->next)
if (ipa_lat_is_single_const (aglat))
{
struct ipa_agg_jf_item ti;
ti.offset = aglat->offset - offset;
ti.value = aglat->values->value;
res.safe_push (ti);
}
return res;
}
/* Intersect all values in INTER with single value lattices in PLATS (while
subtracting OFFSET). */
static void
intersect_with_plats (struct ipcp_param_lattices *plats,
vec<ipa_agg_jf_item_t> *inter,
HOST_WIDE_INT offset)
{
struct ipcp_agg_lattice *aglat;
struct ipa_agg_jf_item *item;
int k;
if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
{
inter->release ();
return;
}
aglat = plats->aggs;
FOR_EACH_VEC_ELT (*inter, k, item)
{
bool found = false;
if (!item->value)
continue;
while (aglat)
{
if (aglat->offset - offset > item->offset)
break;
if (aglat->offset - offset == item->offset)
{
gcc_checking_assert (item->value);
if (values_equal_for_ipcp_p (item->value, aglat->values->value))
found = true;
break;
}
aglat = aglat->next;
}
if (!found)
item->value = NULL_TREE;
}
}
/* Copy agggregate replacement values of NODE (which is an IPA-CP clone) to the
vector result while subtracting OFFSET from the individual value offsets. */
static vec<ipa_agg_jf_item_t>
agg_replacements_to_vector (struct cgraph_node *node, int index,
HOST_WIDE_INT offset)
{
struct ipa_agg_replacement_value *av;
vec<ipa_agg_jf_item_t> res = vNULL;
for (av = ipa_get_agg_replacements_for_node (node); av; av = av->next)
if (av->index == index
&& (av->offset - offset) >= 0)
{
struct ipa_agg_jf_item item;
gcc_checking_assert (av->value);
item.offset = av->offset - offset;
item.value = av->value;
res.safe_push (item);
}
return res;
}
/* Intersect all values in INTER with those that we have already scheduled to
be replaced in parameter number INDEX of NODE, which is an IPA-CP clone
(while subtracting OFFSET). */
static void
intersect_with_agg_replacements (struct cgraph_node *node, int index,
vec<ipa_agg_jf_item_t> *inter,
HOST_WIDE_INT offset)
{
struct ipa_agg_replacement_value *srcvals;
struct ipa_agg_jf_item *item;
int i;
srcvals = ipa_get_agg_replacements_for_node (node);
if (!srcvals)
{
inter->release ();
return;
}
FOR_EACH_VEC_ELT (*inter, i, item)
{
struct ipa_agg_replacement_value *av;
bool found = false;
if (!item->value)
continue;
for (av = srcvals; av; av = av->next)
{
gcc_checking_assert (av->value);
if (av->index == index
&& av->offset - offset == item->offset)
{
if (values_equal_for_ipcp_p (item->value, av->value))
found = true;
break;
}
}
if (!found)
item->value = NULL_TREE;
}
}
/* Intersect values in INTER with aggregate values that come along edge CS to
parameter number INDEX and return it. If INTER does not actually exist yet,
copy all incoming values to it. If we determine we ended up with no values
whatsoever, return a released vector. */
static vec<ipa_agg_jf_item_t>
intersect_aggregates_with_edge (struct cgraph_edge *cs, int index,
vec<ipa_agg_jf_item_t> inter)
{
struct ipa_jump_func *jfunc;
jfunc = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), index);
if (jfunc->type == IPA_JF_PASS_THROUGH
&& ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
{
struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
if (caller_info->ipcp_orig_node)
{
struct cgraph_node *orig_node = caller_info->ipcp_orig_node;
struct ipcp_param_lattices *orig_plats;
orig_plats = ipa_get_parm_lattices (IPA_NODE_REF (orig_node),
src_idx);
if (agg_pass_through_permissible_p (orig_plats, jfunc))
{
if (!inter.exists ())
inter = agg_replacements_to_vector (cs->caller, src_idx, 0);
else
intersect_with_agg_replacements (cs->caller, src_idx,
&inter, 0);
}
}
else
{
struct ipcp_param_lattices *src_plats;
src_plats = ipa_get_parm_lattices (caller_info, src_idx);
if (agg_pass_through_permissible_p (src_plats, jfunc))
{
/* Currently we do not produce clobber aggregate jump
functions, adjust when we do. */
gcc_checking_assert (!jfunc->agg.items);
if (!inter.exists ())
inter = copy_plats_to_inter (src_plats, 0);
else
intersect_with_plats (src_plats, &inter, 0);
}
}
}
else if (jfunc->type == IPA_JF_ANCESTOR
&& ipa_get_jf_ancestor_agg_preserved (jfunc))
{
struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
struct ipcp_param_lattices *src_plats;
HOST_WIDE_INT delta = ipa_get_jf_ancestor_offset (jfunc);
if (caller_info->ipcp_orig_node)
{
if (!inter.exists ())
inter = agg_replacements_to_vector (cs->caller, src_idx, delta);
else
intersect_with_agg_replacements (cs->caller, src_idx, &inter,
delta);
}
else
{
src_plats = ipa_get_parm_lattices (caller_info, src_idx);;
/* Currently we do not produce clobber aggregate jump
functions, adjust when we do. */
gcc_checking_assert (!src_plats->aggs || !jfunc->agg.items);
if (!inter.exists ())
inter = copy_plats_to_inter (src_plats, delta);
else
intersect_with_plats (src_plats, &inter, delta);
}
}
else if (jfunc->agg.items)
{
struct ipa_agg_jf_item *item;
int k;
if (!inter.exists ())
for (unsigned i = 0; i < jfunc->agg.items->length (); i++)
inter.safe_push ((*jfunc->agg.items)[i]);
else
FOR_EACH_VEC_ELT (inter, k, item)
{
int l = 0;
bool found = false;;
if (!item->value)
continue;
while ((unsigned) l < jfunc->agg.items->length ())
{
struct ipa_agg_jf_item *ti;
ti = &(*jfunc->agg.items)[l];
if (ti->offset > item->offset)
break;
if (ti->offset == item->offset)
{
gcc_checking_assert (ti->value);
if (values_equal_for_ipcp_p (item->value,
ti->value))
found = true;
break;
}
l++;
}
if (!found)
item->value = NULL;
}
}
else
{
inter.release();
return vec<ipa_agg_jf_item_t>();
}
return inter;
}
/* Look at edges in CALLERS and collect all known aggregate values that arrive
from all of them. */
static struct ipa_agg_replacement_value *
find_aggregate_values_for_callers_subset (struct cgraph_node *node,
vec<cgraph_edge_p> callers)
{
struct ipa_node_params *dest_info = IPA_NODE_REF (node);
struct ipa_agg_replacement_value *res = NULL;
struct cgraph_edge *cs;
int i, j, count = ipa_get_param_count (dest_info);
FOR_EACH_VEC_ELT (callers, j, cs)
{
int c = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
if (c < count)
count = c;
}
for (i = 0; i < count ; i++)
{
struct cgraph_edge *cs;
vec<ipa_agg_jf_item_t> inter = vNULL;
struct ipa_agg_jf_item *item;
int j;
/* Among other things, the following check should deal with all by_ref
mismatches. */
if (ipa_get_parm_lattices (dest_info, i)->aggs_bottom)
continue;
FOR_EACH_VEC_ELT (callers, j, cs)
{
inter = intersect_aggregates_with_edge (cs, i, inter);
if (!inter.exists ())
goto next_param;
}
FOR_EACH_VEC_ELT (inter, j, item)
{
struct ipa_agg_replacement_value *v;
if (!item->value)
continue;
v = ggc_alloc_ipa_agg_replacement_value ();
v->index = i;
v->offset = item->offset;
v->value = item->value;
v->next = res;
res = v;
}
next_param:
if (inter.exists ())
inter.release ();
}
return res;
}
/* Turn KNOWN_AGGS into a list of aggreate replacement values. */
static struct ipa_agg_replacement_value *
known_aggs_to_agg_replacement_list (vec<ipa_agg_jump_function_t> known_aggs)
{
struct ipa_agg_replacement_value *res = NULL;
struct ipa_agg_jump_function *aggjf;
struct ipa_agg_jf_item *item;
int i, j;
FOR_EACH_VEC_ELT (known_aggs, i, aggjf)
FOR_EACH_VEC_SAFE_ELT (aggjf->items, j, item)
{
struct ipa_agg_replacement_value *v;
v = ggc_alloc_ipa_agg_replacement_value ();
v->index = i;
v->offset = item->offset;
v->value = item->value;
v->next = res;
res = v;
}
return res;
}
/* Determine whether CS also brings all scalar values that the NODE is
specialized for. */
static bool
cgraph_edge_brings_all_scalars_for_node (struct cgraph_edge *cs,
struct cgraph_node *node)
{
struct ipa_node_params *dest_info = IPA_NODE_REF (node);
int count = ipa_get_param_count (dest_info);
struct ipa_node_params *caller_info;
struct ipa_edge_args *args;
int i;
caller_info = IPA_NODE_REF (cs->caller);
args = IPA_EDGE_REF (cs);
for (i = 0; i < count; i++)
{
struct ipa_jump_func *jump_func;
tree val, t;
val = dest_info->known_vals[i];
if (!val)
continue;
if (i >= ipa_get_cs_argument_count (args))
return false;
jump_func = ipa_get_ith_jump_func (args, i);
t = ipa_value_from_jfunc (caller_info, jump_func);
if (!t || !values_equal_for_ipcp_p (val, t))
return false;
}
return true;
}
/* Determine whether CS also brings all aggregate values that NODE is
specialized for. */
static bool
cgraph_edge_brings_all_agg_vals_for_node (struct cgraph_edge *cs,
struct cgraph_node *node)
{
struct ipa_node_params *orig_caller_info = IPA_NODE_REF (cs->caller);
struct ipa_agg_replacement_value *aggval;
int i, ec, count;
aggval = ipa_get_agg_replacements_for_node (node);
if (!aggval)
return true;
count = ipa_get_param_count (IPA_NODE_REF (node));
ec = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
if (ec < count)
for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
if (aggval->index >= ec)
return false;
if (orig_caller_info->ipcp_orig_node)
orig_caller_info = IPA_NODE_REF (orig_caller_info->ipcp_orig_node);
for (i = 0; i < count; i++)
{
static vec<ipa_agg_jf_item_t> values = vec<ipa_agg_jf_item_t>();
struct ipcp_param_lattices *plats;
bool interesting = false;
for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
if (aggval->index == i)
{
interesting = true;
break;
}
if (!interesting)
continue;
plats = ipa_get_parm_lattices (orig_caller_info, aggval->index);
if (plats->aggs_bottom)
return false;
values = intersect_aggregates_with_edge (cs, i, values);
if (!values.exists())
return false;
for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
if (aggval->index == i)
{
struct ipa_agg_jf_item *item;
int j;
bool found = false;
FOR_EACH_VEC_ELT (values, j, item)
if (item->value
&& item->offset == av->offset
&& values_equal_for_ipcp_p (item->value, av->value))
found = true;
if (!found)
{
values.release();
return false;
}
}
}
return true;
}
/* Given an original NODE and a VAL for which we have already created a
specialized clone, look whether there are incoming edges that still lead
into the old node but now also bring the requested value and also conform to
all other criteria such that they can be redirected the the special node.
This function can therefore redirect the final edge in a SCC. */
static void
perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val)
{
struct ipcp_value_source *src;
gcov_type redirected_sum = 0;
for (src = val->sources; src; src = src->next)
{
struct cgraph_edge *cs = src->cs;
while (cs)
{
enum availability availability;
struct cgraph_node *dst = cgraph_function_node (cs->callee,
&availability);
if ((dst == node || IPA_NODE_REF (dst)->is_all_contexts_clone)
&& availability > AVAIL_OVERWRITABLE
&& cgraph_edge_brings_value_p (cs, src))
{
if (cgraph_edge_brings_all_scalars_for_node (cs, val->spec_node)
&& cgraph_edge_brings_all_agg_vals_for_node (cs,
val->spec_node))
{
if (dump_file)
fprintf (dump_file, " - adding an extra caller %s/%i"
" of %s/%i\n",
xstrdup (cgraph_node_name (cs->caller)),
cs->caller->uid,
xstrdup (cgraph_node_name (val->spec_node)),
val->spec_node->uid);
cgraph_redirect_edge_callee (cs, val->spec_node);
redirected_sum += cs->count;
}
}
cs = get_next_cgraph_edge_clone (cs);
}
}
if (redirected_sum)
update_specialized_profile (val->spec_node, node, redirected_sum);
}
/* Copy KNOWN_BINFOS to KNOWN_VALS. */
static void
move_binfos_to_values (vec<tree> known_vals,
vec<tree> known_binfos)
{
tree t;
int i;
for (i = 0; known_binfos.iterate (i, &t); i++)
if (t)
known_vals[i] = t;
}
/* Return true if there is a replacement equivalent to VALUE, INDEX and OFFSET
among those in the AGGVALS list. */
DEBUG_FUNCTION bool
ipcp_val_in_agg_replacements_p (struct ipa_agg_replacement_value *aggvals,
int index, HOST_WIDE_INT offset, tree value)
{
while (aggvals)
{
if (aggvals->index == index
&& aggvals->offset == offset
&& values_equal_for_ipcp_p (aggvals->value, value))
return true;
aggvals = aggvals->next;
}
return false;
}
/* Decide wheter to create a special version of NODE for value VAL of parameter
at the given INDEX. If OFFSET is -1, the value is for the parameter itself,
otherwise it is stored at the given OFFSET of the parameter. KNOWN_CSTS,
KNOWN_BINFOS and KNOWN_AGGS describe the other already known values. */
static bool
decide_about_value (struct cgraph_node *node, int index, HOST_WIDE_INT offset,
struct ipcp_value *val, vec<tree> known_csts,
vec<tree> known_binfos)
{
struct ipa_agg_replacement_value *aggvals;
int freq_sum, caller_count;
gcov_type count_sum;
vec<cgraph_edge_p> callers;
vec<tree> kv;
if (val->spec_node)
{
perhaps_add_new_callers (node, val);
return false;
}
else if (val->local_size_cost + overall_size > max_new_size)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Ignoring candidate value because "
"max_new_size would be reached with %li.\n",
val->local_size_cost + overall_size);
return false;
}
else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum,
&caller_count))
return false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " - considering value ");
print_ipcp_constant_value (dump_file, val->value);
fprintf (dump_file, " for parameter ");
print_generic_expr (dump_file, ipa_get_param (IPA_NODE_REF (node),
index), 0);
if (offset != -1)
fprintf (dump_file, ", offset: " HOST_WIDE_INT_PRINT_DEC, offset);
fprintf (dump_file, " (caller_count: %i)\n", caller_count);
}
if (!good_cloning_opportunity_p (node, val->local_time_benefit,
freq_sum, count_sum,
val->local_size_cost)
&& !good_cloning_opportunity_p (node,
val->local_time_benefit
+ val->prop_time_benefit,
freq_sum, count_sum,
val->local_size_cost
+ val->prop_size_cost))
return false;
if (dump_file)
fprintf (dump_file, " Creating a specialized node of %s/%i.\n",
cgraph_node_name (node), node->uid);
callers = gather_edges_for_value (val, caller_count);
kv = known_csts.copy ();
move_binfos_to_values (kv, known_binfos);
if (offset == -1)
kv[index] = val->value;
find_more_scalar_values_for_callers_subset (node, kv, callers);
aggvals = find_aggregate_values_for_callers_subset (node, callers);
gcc_checking_assert (offset == -1
|| ipcp_val_in_agg_replacements_p (aggvals, index,
offset, val->value));
val->spec_node = create_specialized_node (node, kv, aggvals, callers);
overall_size += val->local_size_cost;
/* TODO: If for some lattice there is only one other known value
left, make a special node for it too. */
return true;
}
/* Decide whether and what specialized clones of NODE should be created. */
static bool
decide_whether_version_node (struct cgraph_node *node)
{
struct ipa_node_params *info = IPA_NODE_REF (node);
int i, count = ipa_get_param_count (info);
vec<tree> known_csts, known_binfos;
vec<ipa_agg_jump_function_t> known_aggs = vNULL;
bool ret = false;
if (count == 0)
return false;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
cgraph_node_name (node), node->uid);
gather_context_independent_values (info, &known_csts, &known_binfos,
info->do_clone_for_all_contexts ? &known_aggs
: NULL, NULL);
for (i = 0; i < count ;i++)
{
struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
struct ipcp_lattice *lat = &plats->itself;
struct ipcp_value *val;
if (!lat->bottom
&& !known_csts[i]
&& !known_binfos[i])
for (val = lat->values; val; val = val->next)
ret |= decide_about_value (node, i, -1, val, known_csts,
known_binfos);
if (!plats->aggs_bottom)
{
struct ipcp_agg_lattice *aglat;
struct ipcp_value *val;
for (aglat = plats->aggs; aglat; aglat = aglat->next)
if (!aglat->bottom && aglat->values
/* If the following is false, the one value is in
known_aggs. */
&& (plats->aggs_contain_variable
|| !ipa_lat_is_single_const (aglat)))
for (val = aglat->values; val; val = val->next)
ret |= decide_about_value (node, i, aglat->offset, val,
known_csts, known_binfos);
}
info = IPA_NODE_REF (node);
}
if (info->do_clone_for_all_contexts)
{
struct cgraph_node *clone;
vec<cgraph_edge_p> callers;
if (dump_file)
fprintf (dump_file, " - Creating a specialized node of %s/%i "
"for all known contexts.\n", cgraph_node_name (node),
node->uid);
callers = collect_callers_of_node (node);
move_binfos_to_values (known_csts, known_binfos);
clone = create_specialized_node (node, known_csts,
known_aggs_to_agg_replacement_list (known_aggs),
callers);
info = IPA_NODE_REF (node);
info->do_clone_for_all_contexts = false;
IPA_NODE_REF (clone)->is_all_contexts_clone = true;
for (i = 0; i < count ; i++)
vec_free (known_aggs[i].items);
known_aggs.release ();
ret = true;
}
else
known_csts.release ();
known_binfos.release ();
return ret;
}
/* Transitively mark all callees of NODE within the same SCC as not dead. */
static void
spread_undeadness (struct cgraph_node *node)
{
struct cgraph_edge *cs;
for (cs = node->callees; cs; cs = cs->next_callee)
if (edge_within_scc (cs))
{
struct cgraph_node *callee;
struct ipa_node_params *info;
callee = cgraph_function_node (cs->callee, NULL);
info = IPA_NODE_REF (callee);
if (info->node_dead)
{
info->node_dead = 0;
spread_undeadness (callee);
}
}
}
/* Return true if NODE has a caller from outside of its SCC that is not
dead. Worker callback for cgraph_for_node_and_aliases. */
static bool
has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
void *data ATTRIBUTE_UNUSED)
{
struct cgraph_edge *cs;
for (cs = node->callers; cs; cs = cs->next_caller)
if (cs->caller->thunk.thunk_p
&& cgraph_for_node_and_aliases (cs->caller,
has_undead_caller_from_outside_scc_p,
NULL, true))
return true;
else if (!edge_within_scc (cs)
&& !IPA_NODE_REF (cs->caller)->node_dead)
return true;
return false;
}
/* Identify nodes within the same SCC as NODE which are no longer needed
because of new clones and will be removed as unreachable. */
static void
identify_dead_nodes (struct cgraph_node *node)
{
struct cgraph_node *v;
for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
if (cgraph_will_be_removed_from_program_if_no_direct_calls (v)
&& !cgraph_for_node_and_aliases (v,
has_undead_caller_from_outside_scc_p,
NULL, true))
IPA_NODE_REF (v)->node_dead = 1;
for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
if (!IPA_NODE_REF (v)->node_dead)
spread_undeadness (v);
if (dump_file && (dump_flags & TDF_DETAILS))
{
for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
if (IPA_NODE_REF (v)->node_dead)
fprintf (dump_file, " Marking node as dead: %s/%i.\n",
cgraph_node_name (v), v->uid);
}
}
/* The decision stage. Iterate over the topological order of call graph nodes
TOPO and make specialized clones if deemed beneficial. */
static void
ipcp_decision_stage (struct topo_info *topo)
{
int i;
if (dump_file)
fprintf (dump_file, "\nIPA decision stage:\n\n");
for (i = topo->nnodes - 1; i >= 0; i--)
{
struct cgraph_node *node = topo->order[i];
bool change = false, iterate = true;
while (iterate)
{
struct cgraph_node *v;
iterate = false;
for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
if (cgraph_function_with_gimple_body_p (v)
&& ipcp_versionable_function_p (v))
iterate |= decide_whether_version_node (v);
change |= iterate;
}
if (change)
identify_dead_nodes (node);
}
}
/* The IPCP driver. */
static unsigned int
ipcp_driver (void)
{
struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
struct topo_info topo;
ipa_check_create_node_params ();
ipa_check_create_edge_args ();
grow_next_edge_clone_vector ();
edge_duplication_hook_holder =
cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook, NULL);
ipcp_values_pool = create_alloc_pool ("IPA-CP values",
sizeof (struct ipcp_value), 32);
ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
sizeof (struct ipcp_value_source), 64);
ipcp_agg_lattice_pool = create_alloc_pool ("IPA_CP aggregate lattices",
sizeof (struct ipcp_agg_lattice),
32);
if (dump_file)
{
fprintf (dump_file, "\nIPA structures before propagation:\n");
if (dump_flags & TDF_DETAILS)
ipa_print_all_params (dump_file);
ipa_print_all_jump_functions (dump_file);
}
/* Topological sort. */
build_toporder_info (&topo);
/* Do the interprocedural propagation. */
ipcp_propagate_stage (&topo);
/* Decide what constant propagation and cloning should be performed. */
ipcp_decision_stage (&topo);
/* Free all IPCP structures. */
free_toporder_info (&topo);
next_edge_clone.release ();
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
ipa_free_all_structures_after_ipa_cp ();
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation end\n");
return 0;
}
/* Initialization and computation of IPCP data structures. This is the initial
intraprocedural analysis of functions, which gathers information to be
propagated later on. */
static void
ipcp_generate_summary (void)
{
struct cgraph_node *node;
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation start:\n");
ipa_register_cgraph_hooks ();
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
{
node->local.versionable
= tree_versionable_function_p (node->symbol.decl);
ipa_analyze_node (node);
}
}
/* Write ipcp summary for nodes in SET. */
static void
ipcp_write_summary (void)
{
ipa_prop_write_jump_functions ();
}
/* Read ipcp summary. */
static void
ipcp_read_summary (void)
{
ipa_prop_read_jump_functions ();
}
/* Gate for IPCP optimization. */
static bool
cgraph_gate_cp (void)
{
/* FIXME: We should remove the optimize check after we ensure we never run
IPA passes when not optimizing. */
return flag_ipa_cp && optimize;
}
struct ipa_opt_pass_d pass_ipa_cp =
{
{
IPA_PASS,
"cp", /* name */
OPTGROUP_NONE, /* optinfo_flags */
cgraph_gate_cp, /* gate */
ipcp_driver, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_IPA_CONSTANT_PROP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_symtab |
TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
},
ipcp_generate_summary, /* generate_summary */
ipcp_write_summary, /* write_summary */
ipcp_read_summary, /* read_summary */
ipa_prop_write_all_agg_replacement, /* write_optimization_summary */
ipa_prop_read_all_agg_replacement, /* read_optimization_summary */
NULL, /* stmt_fixup */
0, /* TODOs */
ipcp_transform_function, /* function_transform */
NULL, /* variable_transform */
};
|