summaryrefslogtreecommitdiff
path: root/gcc/global.c
blob: 13b81736859a137ecc17b193a370199e6e0fdd0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
/* Allocate registers for pseudo-registers that span basic blocks.
   Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998,
   1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "tm_p.h"
#include "flags.h"
#include "regs.h"
#include "function.h"
#include "insn-config.h"
#include "recog.h"
#include "reload.h"
#include "output.h"
#include "toplev.h"
#include "tree-pass.h"
#include "timevar.h"

/* This pass of the compiler performs global register allocation.
   It assigns hard register numbers to all the pseudo registers
   that were not handled in local_alloc.  Assignments are recorded
   in the vector reg_renumber, not by changing the rtl code.
   (Such changes are made by final).  The entry point is
   the function global_alloc.

   After allocation is complete, the reload pass is run as a subroutine
   of this pass, so that when a pseudo reg loses its hard reg due to
   spilling it is possible to make a second attempt to find a hard
   reg for it.  The reload pass is independent in other respects
   and it is run even when stupid register allocation is in use.

   1. Assign allocation-numbers (allocnos) to the pseudo-registers
   still needing allocations and to the pseudo-registers currently
   allocated by local-alloc which may be spilled by reload.
   Set up tables reg_allocno and allocno_reg to map
   reg numbers to allocnos and vice versa.
   max_allocno gets the number of allocnos in use.

   2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
   Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
   for conflicts between allocnos and explicit hard register use
   (which includes use of pseudo-registers allocated by local_alloc).

   3. For each basic block
    walk forward through the block, recording which
    pseudo-registers and which hardware registers are live.
    Build the conflict matrix between the pseudo-registers
    and another of pseudo-registers versus hardware registers.
    Also record the preferred hardware registers
    for each pseudo-register.

   4. Sort a table of the allocnos into order of
   desirability of the variables.

   5. Allocate the variables in that order; each if possible into
   a preferred register, else into another register.  */

/* Number of pseudo-registers which are candidates for allocation.  */

static int max_allocno;

/* Indexed by (pseudo) reg number, gives the allocno, or -1
   for pseudo registers which are not to be allocated.  */

static int *reg_allocno;

struct allocno
{
  int reg;
  /* Gives the number of consecutive hard registers needed by that
     pseudo reg.  */
  int size;

  /* Number of calls crossed by each allocno.  */
  int calls_crossed;

  /* Number of refs to each allocno.  */
  int n_refs;

  /* Frequency of uses of each allocno.  */
  int freq;

  /* Guess at live length of each allocno.
     This is actually the max of the live lengths of the regs.  */
  int live_length;

  /* Set of hard regs conflicting with allocno N.  */

  HARD_REG_SET hard_reg_conflicts;

  /* Set of hard regs preferred by allocno N.
     This is used to make allocnos go into regs that are copied to or from them,
     when possible, to reduce register shuffling.  */

  HARD_REG_SET hard_reg_preferences;

  /* Similar, but just counts register preferences made in simple copy
     operations, rather than arithmetic.  These are given priority because
     we can always eliminate an insn by using these, but using a register
     in the above list won't always eliminate an insn.  */

  HARD_REG_SET hard_reg_copy_preferences;

  /* Similar to hard_reg_preferences, but includes bits for subsequent
     registers when an allocno is multi-word.  The above variable is used for
     allocation while this is used to build reg_someone_prefers, below.  */

  HARD_REG_SET hard_reg_full_preferences;

  /* Set of hard registers that some later allocno has a preference for.  */

  HARD_REG_SET regs_someone_prefers;

#ifdef STACK_REGS
  /* Set to true if allocno can't be allocated in the stack register.  */
  bool no_stack_reg;
#endif
};

static struct allocno *allocno;

/* A vector of the integers from 0 to max_allocno-1,
   sorted in the order of first-to-be-allocated first.  */

static int *allocno_order;

/* Indexed by (pseudo) reg number, gives the number of another
   lower-numbered pseudo reg which can share a hard reg with this pseudo
   *even if the two pseudos would otherwise appear to conflict*.  */

static int *reg_may_share;

/* Define the number of bits in each element of `conflicts' and what
   type that element has.  We use the largest integer format on the
   host machine.  */

#define INT_BITS HOST_BITS_PER_WIDE_INT
#define INT_TYPE HOST_WIDE_INT

/* max_allocno by max_allocno array of bits,
   recording whether two allocno's conflict (can't go in the same
   hardware register).

   `conflicts' is symmetric after the call to mirror_conflicts.  */

static INT_TYPE *conflicts;

/* Number of ints require to hold max_allocno bits.
   This is the length of a row in `conflicts'.  */

static int allocno_row_words;

/* Two macros to test or store 1 in an element of `conflicts'.  */

#define CONFLICTP(I, J) \
 (conflicts[(I) * allocno_row_words + (unsigned) (J) / INT_BITS]	\
  & ((INT_TYPE) 1 << ((unsigned) (J) % INT_BITS)))

/* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno,
   and execute CODE.  */
#define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE)	\
do {									\
  int i_;								\
  int allocno_;								\
  INT_TYPE *p_ = (ALLOCNO_SET);						\
									\
  for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0;		\
       i_--, allocno_ += INT_BITS)					\
    {									\
      unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++;		\
									\
      for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++)	\
	{								\
	  if (word_ & 1)						\
	    {CODE;}							\
	}								\
    }									\
} while (0)

/* This doesn't work for non-GNU C due to the way CODE is macro expanded.  */
#if 0
/* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to
   the conflicting allocno, and execute CODE.  This macro assumes that
   mirror_conflicts has been run.  */
#define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\
  EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\
				 OUT_ALLOCNO, (CODE))
#endif

/* Set of hard regs currently live (during scan of all insns).  */

static HARD_REG_SET hard_regs_live;

/* Set of registers that global-alloc isn't supposed to use.  */

static HARD_REG_SET no_global_alloc_regs;

/* Set of registers used so far.  */

static HARD_REG_SET regs_used_so_far;

/* Number of refs to each hard reg, as used by local alloc.
   It is zero for a reg that contains global pseudos or is explicitly used.  */

static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];

/* Frequency of uses of given hard reg.  */
static int local_reg_freq[FIRST_PSEUDO_REGISTER];

/* Guess at live length of each hard reg, as used by local alloc.
   This is actually the sum of the live lengths of the specific regs.  */

static int local_reg_live_length[FIRST_PSEUDO_REGISTER];

/* Set to 1 a bit in a vector TABLE of HARD_REG_SETs, for vector
   element I, and hard register number J.  */

#define SET_REGBIT(TABLE, I, J)  SET_HARD_REG_BIT (allocno[I].TABLE, J)

/* Bit mask for allocnos live at current point in the scan.  */

static INT_TYPE *allocnos_live;

/* Test, set or clear bit number I in allocnos_live,
   a bit vector indexed by allocno.  */

#define SET_ALLOCNO_LIVE(I)				\
  (allocnos_live[(unsigned) (I) / INT_BITS]		\
     |= ((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))

#define CLEAR_ALLOCNO_LIVE(I)				\
  (allocnos_live[(unsigned) (I) / INT_BITS]		\
     &= ~((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))

/* This is turned off because it doesn't work right for DImode.
   (And it is only used for DImode, so the other cases are worthless.)
   The problem is that it isn't true that there is NO possibility of conflict;
   only that there is no conflict if the two pseudos get the exact same regs.
   If they were allocated with a partial overlap, there would be a conflict.
   We can't safely turn off the conflict unless we have another way to
   prevent the partial overlap.

   Idea: change hard_reg_conflicts so that instead of recording which
   hard regs the allocno may not overlap, it records where the allocno
   may not start.  Change both where it is used and where it is updated.
   Then there is a way to record that (reg:DI 108) may start at 10
   but not at 9 or 11.  There is still the question of how to record
   this semi-conflict between two pseudos.  */
#if 0
/* Reg pairs for which conflict after the current insn
   is inhibited by a REG_NO_CONFLICT note.
   If the table gets full, we ignore any other notes--that is conservative.  */
#define NUM_NO_CONFLICT_PAIRS 4
/* Number of pairs in use in this insn.  */
int n_no_conflict_pairs;
static struct { int allocno1, allocno2;}
  no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
#endif /* 0 */

/* Record all regs that are set in any one insn.
   Communication from mark_reg_{store,clobber} and global_conflicts.  */

static rtx *regs_set;
static int n_regs_set;

/* All registers that can be eliminated.  */

static HARD_REG_SET eliminable_regset;

static int allocno_compare (const void *, const void *);
static void global_conflicts (void);
static void mirror_conflicts (void);
static void expand_preferences (void);
static void prune_preferences (void);
static void find_reg (int, HARD_REG_SET, int, int, int);
static void record_one_conflict (int);
static void record_conflicts (int *, int);
static void mark_reg_store (rtx, rtx, void *);
static void mark_reg_clobber (rtx, rtx, void *);
static void mark_reg_conflicts (rtx);
static void mark_reg_death (rtx);
static void mark_reg_live_nc (int, enum machine_mode);
static void set_preference (rtx, rtx);
static void dump_conflicts (FILE *);
static void reg_becomes_live (rtx, rtx, void *);
static void reg_dies (int, enum machine_mode, struct insn_chain *);

static void allocate_bb_info (void);
static void free_bb_info (void);
static bool check_earlyclobber (rtx);
static void mark_reg_use_for_earlyclobber_1 (rtx *, void *);
static int mark_reg_use_for_earlyclobber (rtx *, void *);
static void calculate_local_reg_bb_info (void);
static void set_up_bb_rts_numbers (void);
static int rpost_cmp (const void *, const void *);
static void calculate_reg_pav (void);
static void modify_reg_pav (void);
static void make_accurate_live_analysis (void);



/* Perform allocation of pseudo-registers not allocated by local_alloc.
   FILE is a file to output debugging information on,
   or zero if such output is not desired.

   Return value is nonzero if reload failed
   and we must not do any more for this function.  */

int
global_alloc (FILE *file)
{
  int retval;
#ifdef ELIMINABLE_REGS
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
#endif
  int need_fp
    = (! flag_omit_frame_pointer
       || (current_function_calls_alloca && EXIT_IGNORE_STACK)
       || FRAME_POINTER_REQUIRED);

  size_t i;
  rtx x;

  make_accurate_live_analysis ();

  max_allocno = 0;

  /* A machine may have certain hard registers that
     are safe to use only within a basic block.  */

  CLEAR_HARD_REG_SET (no_global_alloc_regs);

  /* Build the regset of all eliminable registers and show we can't use those
     that we already know won't be eliminated.  */
#ifdef ELIMINABLE_REGS
  for (i = 0; i < ARRAY_SIZE (eliminables); i++)
    {
      bool cannot_elim
	= (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
	   || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));

      if (!regs_asm_clobbered[eliminables[i].from])
	{
	  SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);

	  if (cannot_elim)
	    SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
	}
      else if (cannot_elim)
	error ("%s cannot be used in asm here",
	       reg_names[eliminables[i].from]);
      else
	regs_ever_live[eliminables[i].from] = 1;
    }
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
  if (!regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
    {
      SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
      if (need_fp)
	SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
    }
  else if (need_fp)
    error ("%s cannot be used in asm here",
	   reg_names[HARD_FRAME_POINTER_REGNUM]);
  else
    regs_ever_live[HARD_FRAME_POINTER_REGNUM] = 1;
#endif

#else
  if (!regs_asm_clobbered[FRAME_POINTER_REGNUM])
    {
      SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
      if (need_fp)
	SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
    }
  else if (need_fp)
    error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
  else
    regs_ever_live[FRAME_POINTER_REGNUM] = 1;
#endif

  /* Track which registers have already been used.  Start with registers
     explicitly in the rtl, then registers allocated by local register
     allocation.  */

  CLEAR_HARD_REG_SET (regs_used_so_far);
#ifdef LEAF_REGISTERS
  /* If we are doing the leaf function optimization, and this is a leaf
     function, it means that the registers that take work to save are those
     that need a register window.  So prefer the ones that can be used in
     a leaf function.  */
  {
    const char *cheap_regs;
    const char *const leaf_regs = LEAF_REGISTERS;

    if (only_leaf_regs_used () && leaf_function_p ())
      cheap_regs = leaf_regs;
    else
      cheap_regs = call_used_regs;
    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      if (regs_ever_live[i] || cheap_regs[i])
	SET_HARD_REG_BIT (regs_used_so_far, i);
  }
#else
  /* We consider registers that do not have to be saved over calls as if
     they were already used since there is no cost in using them.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (regs_ever_live[i] || call_used_regs[i])
      SET_HARD_REG_BIT (regs_used_so_far, i);
#endif

  for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
    if (reg_renumber[i] >= 0)
      SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);

  /* Establish mappings from register number to allocation number
     and vice versa.  In the process, count the allocnos.  */

  reg_allocno = xmalloc (max_regno * sizeof (int));

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    reg_allocno[i] = -1;

  /* Initialize the shared-hard-reg mapping
     from the list of pairs that may share.  */
  reg_may_share = xcalloc (max_regno, sizeof (int));
  for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
    {
      int r1 = REGNO (XEXP (x, 0));
      int r2 = REGNO (XEXP (XEXP (x, 1), 0));
      if (r1 > r2)
	reg_may_share[r1] = r2;
      else
	reg_may_share[r2] = r1;
    }

  for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
    /* Note that reg_live_length[i] < 0 indicates a "constant" reg
       that we are supposed to refrain from putting in a hard reg.
       -2 means do make an allocno but don't allocate it.  */
    if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1
	/* Don't allocate pseudos that cross calls,
	   if this function receives a nonlocal goto.  */
	&& (! current_function_has_nonlocal_label
	    || REG_N_CALLS_CROSSED (i) == 0))
      {
	if (reg_renumber[i] < 0
	    && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
	  reg_allocno[i] = reg_allocno[reg_may_share[i]];
	else
	  reg_allocno[i] = max_allocno++;
	gcc_assert (REG_LIVE_LENGTH (i));
      }
    else
      reg_allocno[i] = -1;

  allocno = xcalloc (max_allocno, sizeof (struct allocno));

  for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
    if (reg_allocno[i] >= 0)
      {
	int num = reg_allocno[i];
	allocno[num].reg = i;
	allocno[num].size = PSEUDO_REGNO_SIZE (i);
	allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i);
	allocno[num].n_refs += REG_N_REFS (i);
	allocno[num].freq += REG_FREQ (i);
	if (allocno[num].live_length < REG_LIVE_LENGTH (i))
	  allocno[num].live_length = REG_LIVE_LENGTH (i);
      }

  /* Calculate amount of usage of each hard reg by pseudos
     allocated by local-alloc.  This is to see if we want to
     override it.  */
  memset (local_reg_live_length, 0, sizeof local_reg_live_length);
  memset (local_reg_n_refs, 0, sizeof local_reg_n_refs);
  memset (local_reg_freq, 0, sizeof local_reg_freq);
  for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
    if (reg_renumber[i] >= 0)
      {
	int regno = reg_renumber[i];
	int endregno = regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
	int j;

	for (j = regno; j < endregno; j++)
	  {
	    local_reg_n_refs[j] += REG_N_REFS (i);
	    local_reg_freq[j] += REG_FREQ (i);
	    local_reg_live_length[j] += REG_LIVE_LENGTH (i);
	  }
      }

  /* We can't override local-alloc for a reg used not just by local-alloc.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (regs_ever_live[i])
      local_reg_n_refs[i] = 0, local_reg_freq[i] = 0;

  allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;

  /* We used to use alloca here, but the size of what it would try to
     allocate would occasionally cause it to exceed the stack limit and
     cause unpredictable core dumps.  Some examples were > 2Mb in size.  */
  conflicts = xcalloc (max_allocno * allocno_row_words, sizeof (INT_TYPE));

  allocnos_live = xmalloc (allocno_row_words * sizeof (INT_TYPE));

  /* If there is work to be done (at least one reg to allocate),
     perform global conflict analysis and allocate the regs.  */

  if (max_allocno > 0)
    {
      /* Scan all the insns and compute the conflicts among allocnos
	 and between allocnos and hard regs.  */

      global_conflicts ();

      mirror_conflicts ();

      /* Eliminate conflicts between pseudos and eliminable registers.  If
	 the register is not eliminated, the pseudo won't really be able to
	 live in the eliminable register, so the conflict doesn't matter.
	 If we do eliminate the register, the conflict will no longer exist.
	 So in either case, we can ignore the conflict.  Likewise for
	 preferences.  */

      for (i = 0; i < (size_t) max_allocno; i++)
	{
	  AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts,
				  eliminable_regset);
	  AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences,
				  eliminable_regset);
	  AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences,
				  eliminable_regset);
	}

      /* Try to expand the preferences by merging them between allocnos.  */

      expand_preferences ();

      /* Determine the order to allocate the remaining pseudo registers.  */

      allocno_order = xmalloc (max_allocno * sizeof (int));
      for (i = 0; i < (size_t) max_allocno; i++)
	allocno_order[i] = i;

      /* Default the size to 1, since allocno_compare uses it to divide by.
	 Also convert allocno_live_length of zero to -1.  A length of zero
	 can occur when all the registers for that allocno have reg_live_length
	 equal to -2.  In this case, we want to make an allocno, but not
	 allocate it.  So avoid the divide-by-zero and set it to a low
	 priority.  */

      for (i = 0; i < (size_t) max_allocno; i++)
	{
	  if (allocno[i].size == 0)
	    allocno[i].size = 1;
	  if (allocno[i].live_length == 0)
	    allocno[i].live_length = -1;
	}

      qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);

      prune_preferences ();

      if (file)
	dump_conflicts (file);

      /* Try allocating them, one by one, in that order,
	 except for parameters marked with reg_live_length[regno] == -2.  */

      for (i = 0; i < (size_t) max_allocno; i++)
	if (reg_renumber[allocno[allocno_order[i]].reg] < 0
	    && REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0)
	  {
	    /* If we have more than one register class,
	       first try allocating in the class that is cheapest
	       for this pseudo-reg.  If that fails, try any reg.  */
	    if (N_REG_CLASSES > 1)
	      {
		find_reg (allocno_order[i], 0, 0, 0, 0);
		if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
		  continue;
	      }
	    if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS)
	      find_reg (allocno_order[i], 0, 1, 0, 0);
	  }

      free (allocno_order);
    }

  /* Do the reloads now while the allocno data still exist, so that we can
     try to assign new hard regs to any pseudo regs that are spilled.  */

#if 0 /* We need to eliminate regs even if there is no rtl code,
	 for the sake of debugging information.  */
  if (n_basic_blocks > 0)
#endif
    {
      build_insn_chain (get_insns ());
      retval = reload (get_insns (), 1);
    }

  /* Clean up.  */
  free (reg_allocno);
  free (reg_may_share);
  free (allocno);
  free (conflicts);
  free (allocnos_live);

  return retval;
}

/* Sort predicate for ordering the allocnos.
   Returns -1 (1) if *v1 should be allocated before (after) *v2.  */

static int
allocno_compare (const void *v1p, const void *v2p)
{
  int v1 = *(const int *)v1p, v2 = *(const int *)v2p;
  /* Note that the quotient will never be bigger than
     the value of floor_log2 times the maximum number of
     times a register can occur in one insn (surely less than 100)
     weighted by the frequency (maximally REG_FREQ_MAX).
     Multiplying this by 10000/REG_FREQ_MAX can't overflow.  */
  int pri1
    = (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].freq)
	/ allocno[v1].live_length)
       * (10000 / REG_FREQ_MAX) * allocno[v1].size);
  int pri2
    = (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].freq)
	/ allocno[v2].live_length)
       * (10000 / REG_FREQ_MAX) * allocno[v2].size);
  if (pri2 - pri1)
    return pri2 - pri1;

  /* If regs are equally good, sort by allocno,
     so that the results of qsort leave nothing to chance.  */
  return v1 - v2;
}

/* Scan the rtl code and record all conflicts and register preferences in the
   conflict matrices and preference tables.  */

static void
global_conflicts (void)
{
  unsigned i;
  basic_block b;
  rtx insn;
  int *block_start_allocnos;

  /* Make a vector that mark_reg_{store,clobber} will store in.  */
  regs_set = xmalloc (max_parallel * sizeof (rtx) * 2);

  block_start_allocnos = xmalloc (max_allocno * sizeof (int));

  FOR_EACH_BB (b)
    {
      memset (allocnos_live, 0, allocno_row_words * sizeof (INT_TYPE));

      /* Initialize table of registers currently live
	 to the state at the beginning of this basic block.
	 This also marks the conflicts among hard registers
	 and any allocnos that are live.

	 For pseudo-regs, there is only one bit for each one
	 no matter how many hard regs it occupies.
	 This is ok; we know the size from PSEUDO_REGNO_SIZE.
	 For explicit hard regs, we cannot know the size that way
	 since one hard reg can be used with various sizes.
	 Therefore, we must require that all the hard regs
	 implicitly live as part of a multi-word hard reg
	 be explicitly marked in basic_block_live_at_start.  */

      {
	regset old = b->il.rtl->global_live_at_start;
	int ax = 0;
	reg_set_iterator rsi;

	REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
	EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i, rsi)
	  {
	    int a = reg_allocno[i];
	    if (a >= 0)
	      {
		SET_ALLOCNO_LIVE (a);
		block_start_allocnos[ax++] = a;
	      }
	    else if ((a = reg_renumber[i]) >= 0)
	      mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
	  }

	/* Record that each allocno now live conflicts with each hard reg
	   now live.

	   It is not necessary to mark any conflicts between pseudos as
	   this point, even for pseudos which are live at the start of
	   the basic block.

	     Given two pseudos X and Y and any point in the CFG P.

	     On any path to point P where X and Y are live one of the
	     following conditions must be true:

		1. X is live at some instruction on the path that
		   evaluates Y.

		2. Y is live at some instruction on the path that
		   evaluates X.

		3. Either X or Y is not evaluated on the path to P
		   (i.e. it is used uninitialized) and thus the
		   conflict can be ignored.

	    In cases #1 and #2 the conflict will be recorded when we
	    scan the instruction that makes either X or Y become live.  */
	record_conflicts (block_start_allocnos, ax);

	/* Pseudos can't go in stack regs at the start of a basic block that
	   is reached by an abnormal edge. Likewise for call clobbered regs,
	   because because caller-save, fixup_abnormal_edges, and possibly
	   the table driven EH machinery are not quite ready to handle such
	   regs live across such edges.  */
	{
	  edge e;
	  edge_iterator ei;

	  FOR_EACH_EDGE (e, ei, b->preds)
	    if (e->flags & EDGE_ABNORMAL)
	      break;

	  if (e != NULL)
	    {
#ifdef STACK_REGS
	      EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, ax,
					     {
					       allocno[ax].no_stack_reg = 1;
					     });
	      for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++)
		record_one_conflict (ax);
#endif

	      /* No need to record conflicts for call clobbered regs if we have
		 nonlocal labels around, as we don't ever try to allocate such
		 regs in this case.  */
	      if (! current_function_has_nonlocal_label)
		for (ax = 0; ax < FIRST_PSEUDO_REGISTER; ax++)
		  if (call_used_regs [ax])
		    record_one_conflict (ax);
	    }
	}
      }

      insn = BB_HEAD (b);

      /* Scan the code of this basic block, noting which allocnos
	 and hard regs are born or die.  When one is born,
	 record a conflict with all others currently live.  */

      while (1)
	{
	  RTX_CODE code = GET_CODE (insn);
	  rtx link;

	  /* Make regs_set an empty set.  */

	  n_regs_set = 0;

	  if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
	    {

#if 0
	      int i = 0;
	      for (link = REG_NOTES (insn);
		   link && i < NUM_NO_CONFLICT_PAIRS;
		   link = XEXP (link, 1))
		if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
		  {
		    no_conflict_pairs[i].allocno1
		      = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
		    no_conflict_pairs[i].allocno2
		      = reg_allocno[REGNO (XEXP (link, 0))];
		    i++;
		  }
#endif /* 0 */

	      /* Mark any registers clobbered by INSN as live,
		 so they conflict with the inputs.  */

	      note_stores (PATTERN (insn), mark_reg_clobber, NULL);

	      /* Mark any registers dead after INSN as dead now.  */

	      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		if (REG_NOTE_KIND (link) == REG_DEAD)
		  mark_reg_death (XEXP (link, 0));

	      /* Mark any registers set in INSN as live,
		 and mark them as conflicting with all other live regs.
		 Clobbers are processed again, so they conflict with
		 the registers that are set.  */

	      note_stores (PATTERN (insn), mark_reg_store, NULL);

#ifdef AUTO_INC_DEC
	      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		if (REG_NOTE_KIND (link) == REG_INC)
		  mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
#endif

	      /* If INSN has multiple outputs, then any reg that dies here
		 and is used inside of an output
		 must conflict with the other outputs.

		 It is unsafe to use !single_set here since it will ignore an
		 unused output.  Just because an output is unused does not mean
		 the compiler can assume the side effect will not occur.
		 Consider if REG appears in the address of an output and we
		 reload the output.  If we allocate REG to the same hard
		 register as an unused output we could set the hard register
		 before the output reload insn.  */
	      if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
		for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		  if (REG_NOTE_KIND (link) == REG_DEAD)
		    {
		      int used_in_output = 0;
		      int i;
		      rtx reg = XEXP (link, 0);

		      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
			{
			  rtx set = XVECEXP (PATTERN (insn), 0, i);
			  if (GET_CODE (set) == SET
			      && !REG_P (SET_DEST (set))
			      && !rtx_equal_p (reg, SET_DEST (set))
			      && reg_overlap_mentioned_p (reg, SET_DEST (set)))
			    used_in_output = 1;
			}
		      if (used_in_output)
			mark_reg_conflicts (reg);
		    }

	      /* Mark any registers set in INSN and then never used.  */

	      while (n_regs_set-- > 0)
		{
		  rtx note = find_regno_note (insn, REG_UNUSED,
					      REGNO (regs_set[n_regs_set]));
		  if (note)
		    mark_reg_death (XEXP (note, 0));
		}
	    }

	  if (insn == BB_END (b))
	    break;
	  insn = NEXT_INSN (insn);
	}
    }

  /* Clean up.  */
  free (block_start_allocnos);
  free (regs_set);
}
/* Expand the preference information by looking for cases where one allocno
   dies in an insn that sets an allocno.  If those two allocnos don't conflict,
   merge any preferences between those allocnos.  */

static void
expand_preferences (void)
{
  rtx insn;
  rtx link;
  rtx set;

  /* We only try to handle the most common cases here.  Most of the cases
     where this wins are reg-reg copies.  */

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn)
	&& (set = single_set (insn)) != 0
	&& REG_P (SET_DEST (set))
	&& reg_allocno[REGNO (SET_DEST (set))] >= 0)
      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
	if (REG_NOTE_KIND (link) == REG_DEAD
	    && REG_P (XEXP (link, 0))
	    && reg_allocno[REGNO (XEXP (link, 0))] >= 0
	    && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
			    reg_allocno[REGNO (XEXP (link, 0))]))
	  {
	    int a1 = reg_allocno[REGNO (SET_DEST (set))];
	    int a2 = reg_allocno[REGNO (XEXP (link, 0))];

	    if (XEXP (link, 0) == SET_SRC (set))
	      {
		IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences,
				  allocno[a2].hard_reg_copy_preferences);
		IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences,
				  allocno[a1].hard_reg_copy_preferences);
	      }

	    IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences,
			      allocno[a2].hard_reg_preferences);
	    IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences,
			      allocno[a1].hard_reg_preferences);
	    IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences,
			      allocno[a2].hard_reg_full_preferences);
	    IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences,
			      allocno[a1].hard_reg_full_preferences);
	  }
}

/* Prune the preferences for global registers to exclude registers that cannot
   be used.

   Compute `regs_someone_prefers', which is a bitmask of the hard registers
   that are preferred by conflicting registers of lower priority.  If possible,
   we will avoid using these registers.  */

static void
prune_preferences (void)
{
  int i;
  int num;
  int *allocno_to_order = xmalloc (max_allocno * sizeof (int));

  /* Scan least most important to most important.
     For each allocno, remove from preferences registers that cannot be used,
     either because of conflicts or register type.  Then compute all registers
     preferred by each lower-priority register that conflicts.  */

  for (i = max_allocno - 1; i >= 0; i--)
    {
      HARD_REG_SET temp;

      num = allocno_order[i];
      allocno_to_order[num] = i;
      COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts);

      if (allocno[num].calls_crossed == 0)
	IOR_HARD_REG_SET (temp, fixed_reg_set);
      else
	IOR_HARD_REG_SET (temp,	call_used_reg_set);

      IOR_COMPL_HARD_REG_SET
	(temp,
	 reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]);

      AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp);
      AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp);
      AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp);
    }

  for (i = max_allocno - 1; i >= 0; i--)
    {
      /* Merge in the preferences of lower-priority registers (they have
	 already been pruned).  If we also prefer some of those registers,
	 don't exclude them unless we are of a smaller size (in which case
	 we want to give the lower-priority allocno the first chance for
	 these registers).  */
      HARD_REG_SET temp, temp2;
      int allocno2;

      num = allocno_order[i];

      CLEAR_HARD_REG_SET (temp);
      CLEAR_HARD_REG_SET (temp2);

      EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words,
				     allocno2,
	{
	  if (allocno_to_order[allocno2] > i)
	    {
	      if (allocno[allocno2].size <= allocno[num].size)
		IOR_HARD_REG_SET (temp,
				  allocno[allocno2].hard_reg_full_preferences);
	      else
		IOR_HARD_REG_SET (temp2,
				  allocno[allocno2].hard_reg_full_preferences);
	    }
	});

      AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences);
      IOR_HARD_REG_SET (temp, temp2);
      COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp);
    }
  free (allocno_to_order);
}

/* Assign a hard register to allocno NUM; look for one that is the beginning
   of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
   The registers marked in PREFREGS are tried first.

   LOSERS, if nonzero, is a HARD_REG_SET indicating registers that cannot
   be used for this allocation.

   If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
   Otherwise ignore that preferred class and use the alternate class.

   If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
   will have to be saved and restored at calls.

   RETRYING is nonzero if this is called from retry_global_alloc.

   If we find one, record it in reg_renumber.
   If not, do nothing.  */

static void
find_reg (int num, HARD_REG_SET losers, int alt_regs_p, int accept_call_clobbered, int retrying)
{
  int i, best_reg, pass;
  HARD_REG_SET used, used1, used2;

  enum reg_class class = (alt_regs_p
			  ? reg_alternate_class (allocno[num].reg)
			  : reg_preferred_class (allocno[num].reg));
  enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg);

  if (accept_call_clobbered)
    COPY_HARD_REG_SET (used1, call_fixed_reg_set);
  else if (allocno[num].calls_crossed == 0)
    COPY_HARD_REG_SET (used1, fixed_reg_set);
  else
    COPY_HARD_REG_SET (used1, call_used_reg_set);

  /* Some registers should not be allocated in global-alloc.  */
  IOR_HARD_REG_SET (used1, no_global_alloc_regs);
  if (losers)
    IOR_HARD_REG_SET (used1, losers);

  IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
  COPY_HARD_REG_SET (used2, used1);

  IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts);

#ifdef CANNOT_CHANGE_MODE_CLASS
  cannot_change_mode_set_regs (&used1, mode, allocno[num].reg);
#endif

  /* Try each hard reg to see if it fits.  Do this in two passes.
     In the first pass, skip registers that are preferred by some other pseudo
     to give it a better chance of getting one of those registers.  Only if
     we can't get a register when excluding those do we take one of them.
     However, we never allocate a register for the first time in pass 0.  */

  COPY_HARD_REG_SET (used, used1);
  IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
  IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers);

  best_reg = -1;
  for (i = FIRST_PSEUDO_REGISTER, pass = 0;
       pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
       pass++)
    {
      if (pass == 1)
	COPY_HARD_REG_SET (used, used1);
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	{
#ifdef REG_ALLOC_ORDER
	  int regno = reg_alloc_order[i];
#else
	  int regno = i;
#endif
	  if (! TEST_HARD_REG_BIT (used, regno)
	      && HARD_REGNO_MODE_OK (regno, mode)
	      && (allocno[num].calls_crossed == 0
		  || accept_call_clobbered
		  || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
	    {
	      int j;
	      int lim = regno + hard_regno_nregs[regno][mode];
	      for (j = regno + 1;
		   (j < lim
		    && ! TEST_HARD_REG_BIT (used, j));
		   j++);
	      if (j == lim)
		{
		  best_reg = regno;
		  break;
		}
#ifndef REG_ALLOC_ORDER
	      i = j;			/* Skip starting points we know will lose */
#endif
	    }
	  }
      }

  /* See if there is a preferred register with the same class as the register
     we allocated above.  Making this restriction prevents register
     preferencing from creating worse register allocation.

     Remove from the preferred registers and conflicting registers.  Note that
     additional conflicts may have been added after `prune_preferences' was
     called.

     First do this for those register with copy preferences, then all
     preferred registers.  */

  AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used);
  GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences,
			 reg_class_contents[(int) NO_REGS], no_copy_prefs);

  if (best_reg >= 0)
    {
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i)
	    && HARD_REGNO_MODE_OK (i, mode)
	    && (allocno[num].calls_crossed == 0
		|| accept_call_clobbered
		|| ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
	    && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
		|| reg_class_subset_p (REGNO_REG_CLASS (i),
				       REGNO_REG_CLASS (best_reg))
		|| reg_class_subset_p (REGNO_REG_CLASS (best_reg),
				       REGNO_REG_CLASS (i))))
	    {
	      int j;
	      int lim = i + hard_regno_nregs[i][mode];
	      for (j = i + 1;
		   (j < lim
		    && ! TEST_HARD_REG_BIT (used, j)
		    && (REGNO_REG_CLASS (j)
			== REGNO_REG_CLASS (best_reg + (j - i))
			|| reg_class_subset_p (REGNO_REG_CLASS (j),
					       REGNO_REG_CLASS (best_reg + (j - i)))
			|| reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
					       REGNO_REG_CLASS (j))));
		   j++);
	      if (j == lim)
		{
		  best_reg = i;
		  goto no_prefs;
		}
	    }
    }
 no_copy_prefs:

  AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used);
  GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences,
			 reg_class_contents[(int) NO_REGS], no_prefs);

  if (best_reg >= 0)
    {
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i)
	    && HARD_REGNO_MODE_OK (i, mode)
	    && (allocno[num].calls_crossed == 0
		|| accept_call_clobbered
		|| ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
	    && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
		|| reg_class_subset_p (REGNO_REG_CLASS (i),
				       REGNO_REG_CLASS (best_reg))
		|| reg_class_subset_p (REGNO_REG_CLASS (best_reg),
				       REGNO_REG_CLASS (i))))
	    {
	      int j;
	      int lim = i + hard_regno_nregs[i][mode];
	      for (j = i + 1;
		   (j < lim
		    && ! TEST_HARD_REG_BIT (used, j)
		    && (REGNO_REG_CLASS (j)
			== REGNO_REG_CLASS (best_reg + (j - i))
			|| reg_class_subset_p (REGNO_REG_CLASS (j),
					       REGNO_REG_CLASS (best_reg + (j - i)))
			|| reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
					       REGNO_REG_CLASS (j))));
		   j++);
	      if (j == lim)
		{
		  best_reg = i;
		  break;
		}
	    }
    }
 no_prefs:

  /* If we haven't succeeded yet, try with caller-saves.
     We need not check to see if the current function has nonlocal
     labels because we don't put any pseudos that are live over calls in
     registers in that case.  */

  if (flag_caller_saves && best_reg < 0)
    {
      /* Did not find a register.  If it would be profitable to
	 allocate a call-clobbered register and save and restore it
	 around calls, do that.  */
      if (! accept_call_clobbered
	  && allocno[num].calls_crossed != 0
	  && CALLER_SAVE_PROFITABLE (allocno[num].n_refs,
				     allocno[num].calls_crossed))
	{
	  HARD_REG_SET new_losers;
	  if (! losers)
	    CLEAR_HARD_REG_SET (new_losers);
	  else
	    COPY_HARD_REG_SET (new_losers, losers);

	  IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
	  find_reg (num, new_losers, alt_regs_p, 1, retrying);
	  if (reg_renumber[allocno[num].reg] >= 0)
	    {
	      caller_save_needed = 1;
	      return;
	    }
	}
    }

  /* If we haven't succeeded yet,
     see if some hard reg that conflicts with us
     was utilized poorly by local-alloc.
     If so, kick out the regs that were put there by local-alloc
     so we can use it instead.  */
  if (best_reg < 0 && !retrying
      /* Let's not bother with multi-reg allocnos.  */
      && allocno[num].size == 1)
    {
      /* Count from the end, to find the least-used ones first.  */
      for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
	{
#ifdef REG_ALLOC_ORDER
	  int regno = reg_alloc_order[i];
#else
	  int regno = i;
#endif

	  if (local_reg_n_refs[regno] != 0
	      /* Don't use a reg no good for this pseudo.  */
	      && ! TEST_HARD_REG_BIT (used2, regno)
	      && HARD_REGNO_MODE_OK (regno, mode)
	      /* The code below assumes that we need only a single
		 register, but the check of allocno[num].size above
		 was not enough.  Sometimes we need more than one
		 register for a single-word value.  */
	      && hard_regno_nregs[regno][mode] == 1
	      && (allocno[num].calls_crossed == 0
		  || accept_call_clobbered
		  || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
#ifdef CANNOT_CHANGE_MODE_CLASS
	      && ! invalid_mode_change_p (regno, REGNO_REG_CLASS (regno),
					  mode)
#endif
#ifdef STACK_REGS
	     && (!allocno[num].no_stack_reg
		 || regno < FIRST_STACK_REG || regno > LAST_STACK_REG)
#endif
	      )
	    {
	      /* We explicitly evaluate the divide results into temporary
		 variables so as to avoid excess precision problems that occur
		 on an i386-unknown-sysv4.2 (unixware) host.  */

	      double tmp1 = ((double) local_reg_freq[regno]
			    / local_reg_live_length[regno]);
	      double tmp2 = ((double) allocno[num].freq
			     / allocno[num].live_length);

	      if (tmp1 < tmp2)
		{
		  /* Hard reg REGNO was used less in total by local regs
		     than it would be used by this one allocno!  */
		  int k;
		  for (k = 0; k < max_regno; k++)
		    if (reg_renumber[k] >= 0)
		      {
			int r = reg_renumber[k];
			int endregno
			  = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (k)];

			if (regno >= r && regno < endregno)
			  reg_renumber[k] = -1;
		      }

		  best_reg = regno;
		  break;
		}
	    }
	}
    }

  /* Did we find a register?  */

  if (best_reg >= 0)
    {
      int lim, j;
      HARD_REG_SET this_reg;

      /* Yes.  Record it as the hard register of this pseudo-reg.  */
      reg_renumber[allocno[num].reg] = best_reg;
      /* Also of any pseudo-regs that share with it.  */
      if (reg_may_share[allocno[num].reg])
	for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
	  if (reg_allocno[j] == num)
	    reg_renumber[j] = best_reg;

      /* Make a set of the hard regs being allocated.  */
      CLEAR_HARD_REG_SET (this_reg);
      lim = best_reg + hard_regno_nregs[best_reg][mode];
      for (j = best_reg; j < lim; j++)
	{
	  SET_HARD_REG_BIT (this_reg, j);
	  SET_HARD_REG_BIT (regs_used_so_far, j);
	  /* This is no longer a reg used just by local regs.  */
	  local_reg_n_refs[j] = 0;
	  local_reg_freq[j] = 0;
	}
      /* For each other pseudo-reg conflicting with this one,
	 mark it as conflicting with the hard regs this one occupies.  */
      lim = num;
      EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j,
	{
	  IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg);
	});
    }
}

/* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
   Perhaps it had previously seemed not worth a hard reg,
   or perhaps its old hard reg has been commandeered for reloads.
   FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
   they do not appear to be allocated.
   If FORBIDDEN_REGS is zero, no regs are forbidden.  */

void
retry_global_alloc (int regno, HARD_REG_SET forbidden_regs)
{
  int alloc_no = reg_allocno[regno];
  if (alloc_no >= 0)
    {
      /* If we have more than one register class,
	 first try allocating in the class that is cheapest
	 for this pseudo-reg.  If that fails, try any reg.  */
      if (N_REG_CLASSES > 1)
	find_reg (alloc_no, forbidden_regs, 0, 0, 1);
      if (reg_renumber[regno] < 0
	  && reg_alternate_class (regno) != NO_REGS)
	find_reg (alloc_no, forbidden_regs, 1, 0, 1);

      /* If we found a register, modify the RTL for the register to
	 show the hard register, and mark that register live.  */
      if (reg_renumber[regno] >= 0)
	{
	  REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
	  mark_home_live (regno);
	}
    }
}

/* Record a conflict between register REGNO
   and everything currently live.
   REGNO must not be a pseudo reg that was allocated
   by local_alloc; such numbers must be translated through
   reg_renumber before calling here.  */

static void
record_one_conflict (int regno)
{
  int j;

  if (regno < FIRST_PSEUDO_REGISTER)
    /* When a hard register becomes live,
       record conflicts with live pseudo regs.  */
    EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j,
      {
	SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno);
      });
  else
    /* When a pseudo-register becomes live,
       record conflicts first with hard regs,
       then with other pseudo regs.  */
    {
      int ialloc = reg_allocno[regno];
      int ialloc_prod = ialloc * allocno_row_words;

      IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live);
      for (j = allocno_row_words - 1; j >= 0; j--)
	conflicts[ialloc_prod + j] |= allocnos_live[j];
    }
}

/* Record all allocnos currently live as conflicting
   with all hard regs currently live.

   ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
   are currently live.  Their bits are also flagged in allocnos_live.  */

static void
record_conflicts (int *allocno_vec, int len)
{
  while (--len >= 0)
    IOR_HARD_REG_SET (allocno[allocno_vec[len]].hard_reg_conflicts,
                      hard_regs_live);
}

/* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true.  */
static void
mirror_conflicts (void)
{
  int i, j;
  int rw = allocno_row_words;
  int rwb = rw * INT_BITS;
  INT_TYPE *p = conflicts;
  INT_TYPE *q0 = conflicts, *q1, *q2;
  unsigned INT_TYPE mask;

  for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1)
    {
      if (! mask)
	{
	  mask = 1;
	  q0++;
	}
      for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb)
	{
	  unsigned INT_TYPE word;

	  for (word = (unsigned INT_TYPE) *p++, q2 = q1; word;
	       word >>= 1, q2 += rw)
	    {
	      if (word & 1)
		*q2 |= mask;
	    }
	}
    }
}

/* Handle the case where REG is set by the insn being scanned,
   during the forward scan to accumulate conflicts.
   Store a 1 in regs_live or allocnos_live for this register, record how many
   consecutive hardware registers it actually needs,
   and record a conflict with all other registers already live.

   Note that even if REG does not remain alive after this insn,
   we must mark it here as live, to ensure a conflict between
   REG and any other regs set in this insn that really do live.
   This is because those other regs could be considered after this.

   REG might actually be something other than a register;
   if so, we do nothing.

   SETTER is 0 if this register was modified by an auto-increment (i.e.,
   a REG_INC note was found for it).  */

static void
mark_reg_store (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
{
  int regno;

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return;

  regs_set[n_regs_set++] = reg;

  if (setter && GET_CODE (setter) != CLOBBER)
    set_preference (reg, SET_SRC (setter));

  regno = REGNO (reg);

  /* Either this is one of the max_allocno pseudo regs not allocated,
     or it is or has a hardware reg.  First handle the pseudo-regs.  */
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (reg_allocno[regno] >= 0)
	{
	  SET_ALLOCNO_LIVE (reg_allocno[regno]);
	  record_one_conflict (regno);
	}
    }

  if (reg_renumber[regno] >= 0)
    regno = reg_renumber[regno];

  /* Handle hardware regs (and pseudos allocated to hard regs).  */
  if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
    {
      int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
      while (regno < last)
	{
	  record_one_conflict (regno);
	  SET_HARD_REG_BIT (hard_regs_live, regno);
	  regno++;
	}
    }
}

/* Like mark_reg_set except notice just CLOBBERs; ignore SETs.  */

static void
mark_reg_clobber (rtx reg, rtx setter, void *data)
{
  if (GET_CODE (setter) == CLOBBER)
    mark_reg_store (reg, setter, data);
}

/* Record that REG has conflicts with all the regs currently live.
   Do not mark REG itself as live.  */

static void
mark_reg_conflicts (rtx reg)
{
  int regno;

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return;

  regno = REGNO (reg);

  /* Either this is one of the max_allocno pseudo regs not allocated,
     or it is or has a hardware reg.  First handle the pseudo-regs.  */
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (reg_allocno[regno] >= 0)
	record_one_conflict (regno);
    }

  if (reg_renumber[regno] >= 0)
    regno = reg_renumber[regno];

  /* Handle hardware regs (and pseudos allocated to hard regs).  */
  if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
    {
      int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
      while (regno < last)
	{
	  record_one_conflict (regno);
	  regno++;
	}
    }
}

/* Mark REG as being dead (following the insn being scanned now).
   Store a 0 in regs_live or allocnos_live for this register.  */

static void
mark_reg_death (rtx reg)
{
  int regno = REGNO (reg);

  /* Either this is one of the max_allocno pseudo regs not allocated,
     or it is a hardware reg.  First handle the pseudo-regs.  */
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (reg_allocno[regno] >= 0)
	CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
    }

  /* For pseudo reg, see if it has been assigned a hardware reg.  */
  if (reg_renumber[regno] >= 0)
    regno = reg_renumber[regno];

  /* Handle hardware regs (and pseudos allocated to hard regs).  */
  if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
    {
      /* Pseudo regs already assigned hardware regs are treated
	 almost the same as explicit hardware regs.  */
      int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
      while (regno < last)
	{
	  CLEAR_HARD_REG_BIT (hard_regs_live, regno);
	  regno++;
	}
    }
}

/* Mark hard reg REGNO as currently live, assuming machine mode MODE
   for the value stored in it.  MODE determines how many consecutive
   registers are actually in use.  Do not record conflicts;
   it is assumed that the caller will do that.  */

static void
mark_reg_live_nc (int regno, enum machine_mode mode)
{
  int last = regno + hard_regno_nregs[regno][mode];
  while (regno < last)
    {
      SET_HARD_REG_BIT (hard_regs_live, regno);
      regno++;
    }
}

/* Try to set a preference for an allocno to a hard register.
   We are passed DEST and SRC which are the operands of a SET.  It is known
   that SRC is a register.  If SRC or the first operand of SRC is a register,
   try to set a preference.  If one of the two is a hard register and the other
   is a pseudo-register, mark the preference.

   Note that we are not as aggressive as local-alloc in trying to tie a
   pseudo-register to a hard register.  */

static void
set_preference (rtx dest, rtx src)
{
  unsigned int src_regno, dest_regno;
  /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
     to compensate for subregs in SRC or DEST.  */
  int offset = 0;
  unsigned int i;
  int copy = 1;

  if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
    src = XEXP (src, 0), copy = 0;

  /* Get the reg number for both SRC and DEST.
     If neither is a reg, give up.  */

  if (REG_P (src))
    src_regno = REGNO (src);
  else if (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src)))
    {
      src_regno = REGNO (SUBREG_REG (src));

      if (REGNO (SUBREG_REG (src)) < FIRST_PSEUDO_REGISTER)
	offset += subreg_regno_offset (REGNO (SUBREG_REG (src)),
				       GET_MODE (SUBREG_REG (src)),
				       SUBREG_BYTE (src),
				       GET_MODE (src));
      else
	offset += (SUBREG_BYTE (src)
		   / REGMODE_NATURAL_SIZE (GET_MODE (src)));
    }
  else
    return;

  if (REG_P (dest))
    dest_regno = REGNO (dest);
  else if (GET_CODE (dest) == SUBREG && REG_P (SUBREG_REG (dest)))
    {
      dest_regno = REGNO (SUBREG_REG (dest));

      if (REGNO (SUBREG_REG (dest)) < FIRST_PSEUDO_REGISTER)
	offset -= subreg_regno_offset (REGNO (SUBREG_REG (dest)),
				       GET_MODE (SUBREG_REG (dest)),
				       SUBREG_BYTE (dest),
				       GET_MODE (dest));
      else
	offset -= (SUBREG_BYTE (dest)
		   / REGMODE_NATURAL_SIZE (GET_MODE (dest)));
    }
  else
    return;

  /* Convert either or both to hard reg numbers.  */

  if (reg_renumber[src_regno] >= 0)
    src_regno = reg_renumber[src_regno];

  if (reg_renumber[dest_regno] >= 0)
    dest_regno = reg_renumber[dest_regno];

  /* Now if one is a hard reg and the other is a global pseudo
     then give the other a preference.  */

  if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
      && reg_allocno[src_regno] >= 0)
    {
      dest_regno -= offset;
      if (dest_regno < FIRST_PSEUDO_REGISTER)
	{
	  if (copy)
	    SET_REGBIT (hard_reg_copy_preferences,
			reg_allocno[src_regno], dest_regno);

	  SET_REGBIT (hard_reg_preferences,
		      reg_allocno[src_regno], dest_regno);
	  for (i = dest_regno;
	       i < dest_regno + hard_regno_nregs[dest_regno][GET_MODE (dest)];
	       i++)
	    SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
	}
    }

  if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
      && reg_allocno[dest_regno] >= 0)
    {
      src_regno += offset;
      if (src_regno < FIRST_PSEUDO_REGISTER)
	{
	  if (copy)
	    SET_REGBIT (hard_reg_copy_preferences,
			reg_allocno[dest_regno], src_regno);

	  SET_REGBIT (hard_reg_preferences,
		      reg_allocno[dest_regno], src_regno);
	  for (i = src_regno;
	       i < src_regno + hard_regno_nregs[src_regno][GET_MODE (src)];
	       i++)
	    SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
	}
    }
}

/* Indicate that hard register number FROM was eliminated and replaced with
   an offset from hard register number TO.  The status of hard registers live
   at the start of a basic block is updated by replacing a use of FROM with
   a use of TO.  */

void
mark_elimination (int from, int to)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      regset r = bb->il.rtl->global_live_at_start;
      if (REGNO_REG_SET_P (r, from))
	{
	  CLEAR_REGNO_REG_SET (r, from);
	  SET_REGNO_REG_SET (r, to);
	}
    }
}

/* Used for communication between the following functions.  Holds the
   current life information.  */
static regset live_relevant_regs;

/* Record in live_relevant_regs and REGS_SET that register REG became live.
   This is called via note_stores.  */
static void
reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *regs_set)
{
  int regno;

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return;

  regno = REGNO (reg);
  if (regno < FIRST_PSEUDO_REGISTER)
    {
      int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
      while (nregs-- > 0)
	{
	  SET_REGNO_REG_SET (live_relevant_regs, regno);
	  if (! fixed_regs[regno])
	    SET_REGNO_REG_SET ((regset) regs_set, regno);
	  regno++;
	}
    }
  else if (reg_renumber[regno] >= 0)
    {
      SET_REGNO_REG_SET (live_relevant_regs, regno);
      SET_REGNO_REG_SET ((regset) regs_set, regno);
    }
}

/* Record in live_relevant_regs that register REGNO died.  */
static void
reg_dies (int regno, enum machine_mode mode, struct insn_chain *chain)
{
  if (regno < FIRST_PSEUDO_REGISTER)
    {
      int nregs = hard_regno_nregs[regno][mode];
      while (nregs-- > 0)
	{
	  CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
	  if (! fixed_regs[regno])
	    SET_REGNO_REG_SET (&chain->dead_or_set, regno);
	  regno++;
	}
    }
  else
    {
      CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
      if (reg_renumber[regno] >= 0)
	SET_REGNO_REG_SET (&chain->dead_or_set, regno);
    }
}

/* Walk the insns of the current function and build reload_insn_chain,
   and record register life information.  */
void
build_insn_chain (rtx first)
{
  struct insn_chain **p = &reload_insn_chain;
  struct insn_chain *prev = 0;
  basic_block b = ENTRY_BLOCK_PTR->next_bb;

  live_relevant_regs = ALLOC_REG_SET (&reg_obstack);

  for (; first; first = NEXT_INSN (first))
    {
      struct insn_chain *c;

      if (first == BB_HEAD (b))
	{
	  unsigned i;
	  bitmap_iterator bi;

	  CLEAR_REG_SET (live_relevant_regs);

	  EXECUTE_IF_SET_IN_BITMAP (b->il.rtl->global_live_at_start, 0, i, bi)
	    {
	      if (i < FIRST_PSEUDO_REGISTER
		  ? ! TEST_HARD_REG_BIT (eliminable_regset, i)
		  : reg_renumber[i] >= 0)
		SET_REGNO_REG_SET (live_relevant_regs, i);
	    }
	}

      if (!NOTE_P (first) && !BARRIER_P (first))
	{
	  c = new_insn_chain ();
	  c->prev = prev;
	  prev = c;
	  *p = c;
	  p = &c->next;
	  c->insn = first;
	  c->block = b->index;

	  if (INSN_P (first))
	    {
	      rtx link;

	      /* Mark the death of everything that dies in this instruction.  */

	      for (link = REG_NOTES (first); link; link = XEXP (link, 1))
		if (REG_NOTE_KIND (link) == REG_DEAD
		    && REG_P (XEXP (link, 0)))
		  reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
			    c);

	      COPY_REG_SET (&c->live_throughout, live_relevant_regs);

	      /* Mark everything born in this instruction as live.  */

	      note_stores (PATTERN (first), reg_becomes_live,
			   &c->dead_or_set);
	    }
	  else
	    COPY_REG_SET (&c->live_throughout, live_relevant_regs);

	  if (INSN_P (first))
	    {
	      rtx link;

	      /* Mark anything that is set in this insn and then unused as dying.  */

	      for (link = REG_NOTES (first); link; link = XEXP (link, 1))
		if (REG_NOTE_KIND (link) == REG_UNUSED
		    && REG_P (XEXP (link, 0)))
		  reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
			    c);
	    }
	}

      if (first == BB_END (b))
	b = b->next_bb;

      /* Stop after we pass the end of the last basic block.  Verify that
	 no real insns are after the end of the last basic block.

	 We may want to reorganize the loop somewhat since this test should
	 always be the right exit test.  Allow an ADDR_VEC or ADDR_DIF_VEC if
	 the previous real insn is a JUMP_INSN.  */
      if (b == EXIT_BLOCK_PTR)
	{
#ifdef ENABLE_CHECKING
	  for (first = NEXT_INSN (first); first; first = NEXT_INSN (first))
	    gcc_assert (!INSN_P (first)
			|| GET_CODE (PATTERN (first)) == USE
			|| ((GET_CODE (PATTERN (first)) == ADDR_VEC
			     || GET_CODE (PATTERN (first)) == ADDR_DIFF_VEC)
			    && prev_real_insn (first) != 0
			    && JUMP_P (prev_real_insn (first))));
#endif
	  break;
	}
    }
  FREE_REG_SET (live_relevant_regs);
  *p = 0;
}

/* Print debugging trace information if -dg switch is given,
   showing the information on which the allocation decisions are based.  */

static void
dump_conflicts (FILE *file)
{
  int i;
  int has_preferences;
  int nregs;
  nregs = 0;
  for (i = 0; i < max_allocno; i++)
    {
      if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
	continue;
      nregs++;
    }
  fprintf (file, ";; %d regs to allocate:", nregs);
  for (i = 0; i < max_allocno; i++)
    {
      int j;
      if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
	continue;
      fprintf (file, " %d", allocno[allocno_order[i]].reg);
      for (j = 0; j < max_regno; j++)
	if (reg_allocno[j] == allocno_order[i]
	    && j != allocno[allocno_order[i]].reg)
	  fprintf (file, "+%d", j);
      if (allocno[allocno_order[i]].size != 1)
	fprintf (file, " (%d)", allocno[allocno_order[i]].size);
    }
  fprintf (file, "\n");

  for (i = 0; i < max_allocno; i++)
    {
      int j;
      fprintf (file, ";; %d conflicts:", allocno[i].reg);
      for (j = 0; j < max_allocno; j++)
	if (CONFLICTP (j, i))
	  fprintf (file, " %d", allocno[j].reg);
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
	if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j))
	  fprintf (file, " %d", j);
      fprintf (file, "\n");

      has_preferences = 0;
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
	if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
	  has_preferences = 1;

      if (! has_preferences)
	continue;
      fprintf (file, ";; %d preferences:", allocno[i].reg);
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
	if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
	  fprintf (file, " %d", j);
      fprintf (file, "\n");
    }
  fprintf (file, "\n");
}

void
dump_global_regs (FILE *file)
{
  int i, j;

  fprintf (file, ";; Register dispositions:\n");
  for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
    if (reg_renumber[i] >= 0)
      {
	fprintf (file, "%d in %d  ", i, reg_renumber[i]);
	if (++j % 6 == 0)
	  fprintf (file, "\n");
      }

  fprintf (file, "\n\n;; Hard regs used: ");
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (regs_ever_live[i])
      fprintf (file, " %d", i);
  fprintf (file, "\n\n");
}



/* This page contains code to make live information more accurate.
   The accurate register liveness at program point P means:
     o there is a path from P to usage of the register and the
       register is not redefined or killed on the path.
     o register at P is partially available, i.e. there is a path from
       a register definition to the point P and the register is not
       killed (clobbered) on the path

   The standard GCC live information means only the first condition.
   Without the partial availability, there will be more register
   conflicts and as a consequence worse register allocation.  The
   typical example where the information can be different is a
   register initialized in the loop at the basic block preceding the
   loop in CFG.  */

/* The following structure contains basic block data flow information
   used to calculate partial availability of registers.  */

struct bb_info
{
  /* The basic block reverse post-order number.  */
  int rts_number;
  /* Registers used uninitialized in an insn in which there is an
     early clobbered register might get the same hard register.  */
  bitmap earlyclobber;
  /* Registers correspondingly killed (clobbered) and defined but not
     killed afterward in the basic block.  */
  bitmap killed, avloc;
  /* Registers partially available and living (in other words whose
     values were calculated and used) correspondingly at the start
     and end of the basic block.  */
  bitmap live_pavin, live_pavout;
};

/* Macros for accessing data flow information of basic blocks.  */

#define BB_INFO(BB) ((struct bb_info *) (BB)->aux)
#define BB_INFO_BY_INDEX(N) BB_INFO (BASIC_BLOCK(N))

/* The function allocates the info structures of each basic block.  It
   also initialized LIVE_PAVIN and LIVE_PAVOUT as if all hard
   registers were partially available.  */

static void
allocate_bb_info (void)
{
  int i;
  basic_block bb;
  struct bb_info *bb_info;
  bitmap init;

  alloc_aux_for_blocks (sizeof (struct bb_info));
  init = BITMAP_ALLOC (NULL);
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    bitmap_set_bit (init, i);
  FOR_EACH_BB (bb)
    {
      bb_info = bb->aux;
      bb_info->earlyclobber = BITMAP_ALLOC (NULL);
      bb_info->avloc = BITMAP_ALLOC (NULL);
      bb_info->killed = BITMAP_ALLOC (NULL);
      bb_info->live_pavin = BITMAP_ALLOC (NULL);
      bb_info->live_pavout = BITMAP_ALLOC (NULL);
      bitmap_copy (bb_info->live_pavin, init);
      bitmap_copy (bb_info->live_pavout, init);
    }
  BITMAP_FREE (init);
}

/* The function frees the allocated info of all basic blocks.  */

static void
free_bb_info (void)
{
  basic_block bb;
  struct bb_info *bb_info;

  FOR_EACH_BB (bb)
    {
      bb_info = BB_INFO (bb);
      BITMAP_FREE (bb_info->live_pavout);
      BITMAP_FREE (bb_info->live_pavin);
      BITMAP_FREE (bb_info->killed);
      BITMAP_FREE (bb_info->avloc);
      BITMAP_FREE (bb_info->earlyclobber);
    }
  free_aux_for_blocks ();
}

/* The function modifies local info for register REG being changed in
   SETTER.  DATA is used to pass the current basic block info.  */

static void
mark_reg_change (rtx reg, rtx setter, void *data)
{
  int regno;
  basic_block bb = data;
  struct bb_info *bb_info = BB_INFO (bb);

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return;

  regno = REGNO (reg);
  bitmap_set_bit (bb_info->killed, regno);
  
  if (GET_CODE (setter) != CLOBBER)
    bitmap_set_bit (bb_info->avloc, regno);
  else
    bitmap_clear_bit (bb_info->avloc, regno);
}

/* Classes of registers which could be early clobbered in the current
   insn.  */

DEF_VEC_I(int);
DEF_VEC_ALLOC_I(int,heap);

static VEC(int,heap) *earlyclobber_regclass;

/* This function finds and stores register classes that could be early
   clobbered in INSN.  If any earlyclobber classes are found, the function
   returns TRUE, in all other cases it returns FALSE.  */

static bool
check_earlyclobber (rtx insn)
{
  int opno;
  bool found = false;

  extract_insn (insn);

  VEC_truncate (int, earlyclobber_regclass, 0);
  for (opno = 0; opno < recog_data.n_operands; opno++)
    {
      char c;
      bool amp_p;
      int i;
      enum reg_class class;
      const char *p = recog_data.constraints[opno];

      class = NO_REGS;
      amp_p = false;
      for (;;)
	{
	  c = *p;
	  switch (c)
	    {
	    case '=':  case '+':  case '?':
	    case '#':  case '!':
	    case '*':  case '%':
	    case 'm':  case '<':  case '>':  case 'V':  case 'o':
	    case 'E':  case 'F':  case 'G':  case 'H':
	    case 's':  case 'i':  case 'n':
	    case 'I':  case 'J':  case 'K':  case 'L':
	    case 'M':  case 'N':  case 'O':  case 'P':
	    case 'X':
	    case '0': case '1':  case '2':  case '3':  case '4':
	    case '5': case '6':  case '7':  case '8':  case '9':
	      /* These don't say anything we care about.  */
	      break;

	    case '&':
	      amp_p = true;
	      break;
	    case '\0':
	    case ',':
	      if (amp_p && class != NO_REGS)
		{
		  int rc;

		  found = true;
		  for (i = 0;
		       VEC_iterate (int, earlyclobber_regclass, i, rc);
		       i++)
		    {
		      if (rc == (int) class)
			goto found_rc;
		    }

		  /* We use VEC_quick_push here because
		     earlyclobber_regclass holds no more than
		     N_REG_CLASSES elements. */
		  VEC_quick_push (int, earlyclobber_regclass, (int) class);
		found_rc:
		  ;
		}
	      
	      amp_p = false;
	      class = NO_REGS;
	      break;

	    case 'r':
	      class = GENERAL_REGS;
	      break;

	    default:
	      class = REG_CLASS_FROM_CONSTRAINT (c, p);
	      break;
	    }
	  if (c == '\0')
	    break;
	  p += CONSTRAINT_LEN (c, p);
	}
    }

  return found;
}

/* The function checks that pseudo-register *X has a class
   intersecting with the class of pseudo-register could be early
   clobbered in the same insn.
   This function is a no-op if earlyclobber_regclass is empty.  */

static int
mark_reg_use_for_earlyclobber (rtx *x, void *data ATTRIBUTE_UNUSED)
{
  enum reg_class pref_class, alt_class;
  int i, regno;
  basic_block bb = data;
  struct bb_info *bb_info = BB_INFO (bb);

  if (REG_P (*x) && REGNO (*x) >= FIRST_PSEUDO_REGISTER)
    {
      int rc;

      regno = REGNO (*x);
      if (bitmap_bit_p (bb_info->killed, regno)
	  || bitmap_bit_p (bb_info->avloc, regno))
	return 0;
      pref_class = reg_preferred_class (regno);
      alt_class = reg_alternate_class (regno);
      for (i = 0; VEC_iterate (int, earlyclobber_regclass, i, rc); i++)
	{
	  if (reg_classes_intersect_p (rc, pref_class)
	      || (rc != NO_REGS
		  && reg_classes_intersect_p (rc, alt_class)))
	    {
	      bitmap_set_bit (bb_info->earlyclobber, regno);
	      break;
	    }
	}
    }
  return 0;
}

/* The function processes all pseudo-registers in *X with the aid of
   previous function.  */

static void
mark_reg_use_for_earlyclobber_1 (rtx *x, void *data)
{
  for_each_rtx (x, mark_reg_use_for_earlyclobber, data);
}

/* The function calculates local info for each basic block.  */

static void
calculate_local_reg_bb_info (void)
{
  basic_block bb;
  rtx insn, bound;

  /* We know that earlyclobber_regclass holds no more than
    N_REG_CLASSES elements.  See check_earlyclobber.  */
  earlyclobber_regclass = VEC_alloc (int, heap, N_REG_CLASSES);
  FOR_EACH_BB (bb)
    {
      bound = NEXT_INSN (BB_END (bb));
      for (insn = BB_HEAD (bb); insn != bound; insn = NEXT_INSN (insn))
	if (INSN_P (insn))
	  {
	    note_stores (PATTERN (insn), mark_reg_change, bb);
	    if (check_earlyclobber (insn))
	      note_uses (&PATTERN (insn), mark_reg_use_for_earlyclobber_1, bb);
	  }
    }
  VEC_free (int, heap, earlyclobber_regclass);
}

/* The function sets up reverse post-order number of each basic
   block.  */

static void
set_up_bb_rts_numbers (void)
{
  int i;
  int *rts_order;
  
  rts_order = xmalloc (sizeof (int) * n_basic_blocks);
  flow_reverse_top_sort_order_compute (rts_order);
  for (i = 0; i < n_basic_blocks; i++)
    BB_INFO_BY_INDEX (rts_order [i])->rts_number = i;
  free (rts_order);
}

/* Compare function for sorting blocks in reverse postorder.  */

static int
rpost_cmp (const void *bb1, const void *bb2)
{
  basic_block b1 = *(basic_block *) bb1, b2 = *(basic_block *) bb2;

  return BB_INFO (b2)->rts_number - BB_INFO (b1)->rts_number;
}

/* Temporary bitmap used for live_pavin, live_pavout calculation.  */
static bitmap temp_bitmap;

DEF_VEC_P(basic_block);
DEF_VEC_ALLOC_P(basic_block,heap);

/* The function calculates partial register availability according to
   the following equations:

     bb.live_pavin
       = empty for entry block
         | union (live_pavout of predecessors) & global_live_at_start
     bb.live_pavout = union (bb.live_pavin - bb.killed, bb.avloc)
                      & global_live_at_end  */

static void
calculate_reg_pav (void)
{
  basic_block bb, succ;
  edge e;
  int i, nel;
  VEC(basic_block,heap) *bbs, *new_bbs, *temp;
  basic_block *bb_array;
  sbitmap wset;

  bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
  new_bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
  temp_bitmap = BITMAP_ALLOC (NULL);
  FOR_EACH_BB (bb)
    {
      VEC_quick_push (basic_block, bbs, bb);
    }
  wset = sbitmap_alloc (n_basic_blocks + 1);
  while (VEC_length (basic_block, bbs))
    {
      bb_array = VEC_address (basic_block, bbs);
      nel = VEC_length (basic_block, bbs);
      qsort (bb_array, nel, sizeof (basic_block), rpost_cmp);
      sbitmap_zero (wset);
      for (i = 0; i < nel; i++)
	{
	  edge_iterator ei;
	  struct bb_info *bb_info;
	  bitmap bb_live_pavin, bb_live_pavout;
	      
	  bb = bb_array [i];
	  bb_info = BB_INFO (bb);
	  bb_live_pavin = bb_info->live_pavin;
	  bb_live_pavout = bb_info->live_pavout;
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    {
	      basic_block pred = e->src;

	      if (pred->index != ENTRY_BLOCK)
		bitmap_ior_into (bb_live_pavin, BB_INFO (pred)->live_pavout);
	    }
	  bitmap_and_into (bb_live_pavin, bb->il.rtl->global_live_at_start);
	  bitmap_ior_and_compl (temp_bitmap, bb_info->avloc,
				bb_live_pavin, bb_info->killed);
	  bitmap_and_into (temp_bitmap, bb->il.rtl->global_live_at_end);
	  if (! bitmap_equal_p (temp_bitmap, bb_live_pavout))
	    {
	      bitmap_copy (bb_live_pavout, temp_bitmap);
	      FOR_EACH_EDGE (e, ei, bb->succs)
		{
		  succ = e->dest;
		  if (succ->index != EXIT_BLOCK
		      && !TEST_BIT (wset, succ->index))
		    {
		      SET_BIT (wset, succ->index);
		      VEC_quick_push (basic_block, new_bbs, succ);
		    }
		}
	    }
	}
      temp = bbs;
      bbs = new_bbs;
      new_bbs = temp;
      VEC_truncate (basic_block, new_bbs, 0);
    }
  sbitmap_free (wset);
  BITMAP_FREE (temp_bitmap);
  VEC_free (basic_block, heap, new_bbs);
  VEC_free (basic_block, heap, bbs);
}

/* The function modifies partial availability information for two
   special cases to prevent incorrect work of the subsequent passes
   with the accurate live information based on the partial
   availability.  */

static void
modify_reg_pav (void)
{
  basic_block bb;
  struct bb_info *bb_info;
#ifdef STACK_REGS
  int i;
  HARD_REG_SET zero, stack_hard_regs, used;
  bitmap stack_regs;

  CLEAR_HARD_REG_SET (zero);
  CLEAR_HARD_REG_SET (stack_hard_regs);
  for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
    SET_HARD_REG_BIT(stack_hard_regs, i);
  stack_regs = BITMAP_ALLOC (NULL);
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    {
      COPY_HARD_REG_SET (used, reg_class_contents[reg_preferred_class (i)]);
      IOR_HARD_REG_SET (used, reg_class_contents[reg_alternate_class (i)]);
      AND_HARD_REG_SET (used, stack_hard_regs);
      GO_IF_HARD_REG_EQUAL(used, zero, skip);
      bitmap_set_bit (stack_regs, i);
    skip:
      ;
    }
#endif
  FOR_EACH_BB (bb)
    {
      bb_info = BB_INFO (bb);
      
      /* Reload can assign the same hard register to uninitialized
	 pseudo-register and early clobbered pseudo-register in an
	 insn if the pseudo-register is used first time in given BB
	 and not lived at the BB start.  To prevent this we don't
	 change life information for such pseudo-registers.  */
      bitmap_ior_into (bb_info->live_pavin, bb_info->earlyclobber);
#ifdef STACK_REGS
      /* We can not use the same stack register for uninitialized
	 pseudo-register and another living pseudo-register because if the
	 uninitialized pseudo-register dies, subsequent pass reg-stack
	 will be confused (it will believe that the other register
	 dies).  */
      bitmap_ior_into (bb_info->live_pavin, stack_regs);
#endif
    }
#ifdef STACK_REGS
  BITMAP_FREE (stack_regs);
#endif
}

/* The following function makes live information more accurate by
   modifying global_live_at_start and global_live_at_end of basic
   blocks.

   The standard GCC life analysis permits registers to live
   uninitialized, for example:

       R is never used
       .....
       Loop:
         R is defined
       ...
       R is used.

   With normal life_analysis, R would be live before "Loop:".
   The result is that R causes many interferences that do not
   serve any purpose.

   After the function call a register lives at a program point
   only if it is initialized on a path from CFG entry to the
   program point.  */

static void
make_accurate_live_analysis (void)
{
  basic_block bb;
  struct bb_info *bb_info;

  max_regno = max_reg_num ();
  compact_blocks ();
  allocate_bb_info ();
  calculate_local_reg_bb_info ();
  set_up_bb_rts_numbers ();
  calculate_reg_pav ();
  modify_reg_pav ();
  FOR_EACH_BB (bb)
    {
      bb_info = BB_INFO (bb);
      
      bitmap_and_into (bb->il.rtl->global_live_at_start, bb_info->live_pavin);
      bitmap_and_into (bb->il.rtl->global_live_at_end, bb_info->live_pavout);
    }
  free_bb_info ();
}
/* Run old register allocator.  Return TRUE if we must exit
   rest_of_compilation upon return.  */
static void
rest_of_handle_global_alloc (void)
{
  bool failure;

  /* If optimizing, allocate remaining pseudo-regs.  Do the reload
     pass fixing up any insns that are invalid.  */

  if (optimize)
    failure = global_alloc (dump_file);
  else
    {
      build_insn_chain (get_insns ());
      failure = reload (get_insns (), 0);
    }

  if (dump_enabled_p (pass_global_alloc.static_pass_number))
    {
      timevar_push (TV_DUMP);
      dump_global_regs (dump_file);
      timevar_pop (TV_DUMP);
    }

  gcc_assert (reload_completed || failure);
  reload_completed = !failure;
}

struct tree_opt_pass pass_global_alloc =
{
  "greg",                               /* name */
  NULL,                                 /* gate */
  rest_of_handle_global_alloc,          /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_GLOBAL_ALLOC,                      /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
  TODO_ggc_collect,                     /* todo_flags_finish */
  'g'                                   /* letter */
};