summaryrefslogtreecommitdiff
path: root/test/ka-table-gen.py
blob: 701382e845a30788aa31c872ea799c14ae88d823 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
#! /usr/bin/python3
# Compute test cases for ka-* tests.
#
# Written by Zack Weinberg <zackw at panix.com> in 2019.
# To the extent possible under law, Zack Weinberg has waived all
# copyright and related or neighboring rights to this work.
#
# See https://creativecommons.org/publicdomain/zero/1.0/ for further
# details.

# This program generates ka-table.inc, which defines the set
# of tests performed by the ka-*.c tests.  It is not run automatically
# during the build for two reasons: it's very slow, and it requires Python
# 3.6 or greater with Passlib <https://passlib.readthedocs.io/en/stable/>
# available.
#
# If you modify this program, make sure to update ka-table.inc,
# by running 'make regen-ka-table' (libcrypt.so must already have been
# built), and then check in the updates to that file in the same
# commit as your changes to this program.  You will need to install
# Passlib itself, but not any other libraries.
#
# This program intentionally uses Passlib's slow pure-Python back
# ends, rather than accelerated C modules that tend to be, at their
# core, the same code libxcrypt uses itself, so that we really are
# testing libxcrypt against known answers generated with a different
# implementation.

import array
import ctypes
import multiprocessing
import os
import re
import sys

# force passlib to allow use of its built-in bcrypt implementation
os.environ["PASSLIB_BUILTIN_BCRYPT"] = "enabled"

import passlib.hash

# In order to tickle various bugs and limitations in older hashing
# methods precisely, we need to test several passphrases whose byte
# sequences are not valid Unicode text in any encoding.  We therefore
# use exclusively byte strings in this array.
PHRASES = [
    # All ASCII printable, various lengths.  Most of these were taken
    # from older known-answer tests for specific hashing methods.
    b'',
    b' ',
    b'a',
    b'ab',
    b'abc',
    b'U*U',
    b'U*U*',
    b'U*U*U',
    b'.....',
    b'dragon',
    b'dRaGoN',
    b'DrAgOn',
    b'PAROLX',
    b'U*U***U',
    b'abcdefg',
    b'01234567',
    b'726 even',
    b'zyxwvuts',
    b'ab1234567',
    b'alexander',
    b'beautiful',
    b'challenge',
    b'chocolate',
    b'cr1234567',
    b'katherine',
    b'stephanie',
    b'sunflower',
    b'basketball',
    b'porsche911',
    b'|_337T`/p3',
    b'thunderbird',
    b'Hello world!',
    b'pleaseletmein',
    b'a short string',
    b'zxyDPWgydbQjgq',
    b'photojournalism',
    b'ecclesiastically',
    b'congregationalism',
    b'dihydrosphingosine',
    b'semianthropological',
    b'palaeogeographically',
    b'electromyographically',
    b'noninterchangeableness',
    b'abcdefghijklmnopqrstuvwxyz',
    b'electroencephalographically',
    b'antidisestablishmentarianism',
    b'cyclotrimethylenetrinitramine',
    b'dichlorodiphenyltrichloroethane',
    b'multiple words seperated by spaces',
    b'supercalifragilisticexpialidocious',
    b'we have a short salt string but not a short password',
    b'multiple word$ $eperated by $pace$ and $pecial character$',
    b'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789',
    (b'1234567890123456789012345678901234567890'
     b'1234567890123456789012345678901234567890'),
    (b'a very much longer text to encrypt.  This one even stretches over more'
     b'than one line.'),

    # ASCII printables with their high bits flipped - DES-based hashes collide.
    # All of these have an exact counterpart above.
    b'\xd0\xc1\xd2\xcf\xcc\xd8',              # 'PAROLX'
    b'\xd5\xaa\xd5\xaa\xaa\xaa\xd5\xaa',      # 'U*U***U*'
    b'\xe1\xec\xe5\xf8\xe1\xee\xe4\xe5\xf2',  # 'alexander'
    b'\xf3\xf4\xe5\xf0\xe8\xe1\xee\xe9\xe5',  # 'stephanie'
    # '*U*U*U*U*U*U*U*U*'
    b'\xaa\xd5\xaa\xd5\xaa\xd5\xaa\xd5\xaa\xd5\xaa\xd5\xaa\xd5\xaa\xd5\xaa',

    # A few UTF-8 strings and what they will collide with for
    # DES-based hashes.
    b'\xC3\xA9tude', b'C)tude', # UTF-8(NFC(étude))
    b'Chl\xC3\xB6e', b'ChlC6e', # UTF-8(NFC(Chlöe))
    # Eight letters, but 10 bytes: UTF-8(NFC(Ångström))
    b'\xC3\x85ngstr\xC3\xB6m', b'C\x05ngstrC6m', b'C\x05ngstrC'

    # descrypt truncates everything to 8 characters.
    b'U*U***U*', b'U*U***U*ignored',
    b'U*U*U*U*', b'U*U*U*U*ignored',
    b'*U*U*U*U', b'*U*U*U*U*', b'*U*U*U*U*U*U*U*U', b'*U*U*U*U*U*U*U*U*',

    # Patterns designed to tickle the bcrypt $2x$ sign-extension bug.
    b'\xa3',
    b'\xa3a',
    b'\xd1\x91',
    b'\xa3ab',
    b'\xff\xff\xa3',
    b'1\xa3345',
    b'\xff\xa3345',
    b'\xff\xa334\xff\xff\xff\xa3345',

    (b'\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff'
     b'\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff'
     b'\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff'
     b'\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff'
     b'\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff'
     b'\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff\x55\xaa\xff'),

    (b'\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55'
     b'\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55'
     b'\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55'
     b'\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55'
     b'\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55'
     b'\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55\xaa\x55'),

    # bcrypt truncates to 72 characters
    (b'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
     b'0123456789'),
    (b'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
     b'0123456789chars after 72 are ignored'),

    (b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'),

    (b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa'
     b'chars after 72 are ignored as usual'),

    # bigcrypt truncates to 128 characters
    # (first sentence of _Twenty Thousand Leagues Under The Sea_)
    (b'THE YEAR 1866 was marked by a bizarre development, an unexplained and '
     b'downright inexplicable phenomenon that surely no one has forgotten.'),

    # first 8 characters of above (des)
    b'THE YEAR',
    # first 72 characters (bcrypt)
    b'THE YEAR 1866 was marked by a bizarre development, an unexplained and do',
    # first 128 characters (bigcrypt)
    (b'THE YEAR 1866 was marked by a bizarre development, an unexplained and '
     b'downright inexplicable phenomenon that surely no one has f')
]

# passlib does not support all of the hashing methods we do, no longer
# supports generation of bare setting strings, and in some cases does
# not support all of the variants we need to generate.  Therefore,
# there is a shim for each hashing method (variant).  Shims must be
# named 'h_METHOD' where METHOD is the name for the method used by the
# INCLUDE_method macros.
#
# Each shim function takes at least the arguments phrase, rounds, and
# salt, in that order.  Additional optional arguments are allowed.  It
# should do 'yield (phrase, setting, expected)' at least once, where
# phrase is the phrase argument, setting is a setting string generated
# from rounds and salt, and expected is the hashed passphrase expected
# to be generated from that combination of phrase and setting.
#
# When implementing new shims, use of passlib's pure-Python "backends"
# is strongly preferred where possible, because the speed of this
# program does not matter, and the C backends tend to be based on some
# incarnation of the same code that libxcrypt uses itself, so it
# wouldn't be a proper interop test.

# straightforward passlib wrappers, sorted by age of algorithm
DES_CRYPT = passlib.hash.des_crypt
DES_CRYPT.set_backend("builtin")
def h_descrypt(phrase, rounds, salt):
    expected = DES_CRYPT.using(
        salt=salt, truncate_error=False
    ).hash(phrase)
    setting = expected[:2]
    yield (phrase, setting, expected)

BIGCRYPT = passlib.hash.bigcrypt
# BIGCRYPT.set_backend("builtin") # currently p.h.bigcrypt always uses builtin
def h_bigcrypt(phrase, rounds, salt):
    # p.h.bigcrypt doesn't truncate to 128 chars.
    # The bigcrypt implementation in libxcrypt was reverse engineered
    # from a closed-source original and it's possible that they could
    # have gotten it wrong, but let's stick to what we have.
    expected = BIGCRYPT.using(
        salt=salt
    ).hash(phrase[:128])
    # bigcrypt has no prefix, so our crypt() looks at the length of
    # the setting string to decide whether it should use bigcrypt or
    # descrypt.  For bigcrypt to be used, the setting must be too long
    # to be a traditional DES hashed password.
    setting = expected[:2] + ".............."
    yield (phrase, setting, expected)

BSDI_CRYPT = passlib.hash.bsdi_crypt
BSDI_CRYPT.set_backend("builtin")
def h_bsdicrypt(phrase, rounds, salt):
    expected = BSDI_CRYPT.using(
        salt=salt, rounds=rounds
    ).hash(phrase)
    setting = expected[:9]
    yield (phrase, setting, expected)

MD5_CRYPT = passlib.hash.md5_crypt
MD5_CRYPT.set_backend("builtin")
def h_md5crypt(phrase, rounds, salt):
    expected = MD5_CRYPT.using(
        salt=salt
    ).hash(phrase)
    setting = expected[:expected.rfind('$')]
    yield (phrase, setting, expected)

BSD_NTHASH = passlib.hash.bsd_nthash
#BSD_NTHASH.set_backend("builtin") # has only the built-in backend
def h_nt(phrase, rounds, salt):
    # passlib.hash.bsd_nthash attempts to decode byte strings as UTF-8, which
    # is Not What We Want.  Python's iso_8859_1 is an identity map from 00..FF
    # to U+0000..U+00FF, which is correct for this application.
    expected = BSD_NTHASH.hash(phrase.decode("iso_8859_1"))
    # NTHash doesn't have a salt.
    # Older versions of libxcrypt generated a fake salt which
    # we should ensure is ignored.
    yield (phrase, "$3$", expected)
    yield (phrase, "$3$__not_used__0123456789abcdef", expected)

SHA1_CRYPT = passlib.hash.sha1_crypt
SHA1_CRYPT.set_backend("builtin")
def h_sha1crypt(phrase, rounds, salt):
    expected = SHA1_CRYPT.using(
        salt=salt, rounds=rounds
    ).hash(phrase)
    setting = expected[:expected.rfind('$')]
    yield (phrase, setting, expected)

SHA256_CRYPT = passlib.hash.sha256_crypt
SHA256_CRYPT.set_backend("builtin")
def h_sha256crypt(phrase, rounds, salt):
    expected = SHA256_CRYPT.using(
        salt=salt, rounds=rounds
    ).hash(phrase)
    setting = expected[:expected.rfind('$')]
    yield (phrase, setting, expected)

SHA512_CRYPT = passlib.hash.sha512_crypt
SHA512_CRYPT.set_backend("builtin")
def h_sha512crypt(phrase, rounds, salt):
    expected = SHA512_CRYPT.using(
        salt=salt, rounds=rounds
    ).hash(phrase)
    setting = expected[:expected.rfind('$')]
    yield (phrase, setting, expected)

# these need to do more work by hand

# We need to test setting strings both with and without the suffix
# that triggers the off-by-one error in the original Sun hash parser
# (which must be preserved by all interoperable implementations).
# passlib.hash.sun_md5_crypt.using(..., bare_salt=True) does not
# actually work.
from passlib.handlers.sun_md5_crypt import raw_sun_md5_crypt
def h_sunmd5(phrase, rounds, salt):

    # sunmd5 is extremely slow in this test, compared to all the other
    # hashes, because we have to do extra tests of bug-compatibility,
    # because its round count cannot be reduced below 4096, and
    # because on approximately half of those rounds it feeds an
    # additional 1.5k of text to MD5_Update.  The only optimization
    # that wouldn't break compatibility would be to plug in a faster
    # MD5 core, but that's not worth the engineering effort since it
    # would only benefit obsolete hashes.  Instead, skip most of the
    # test phrases for this hash.  This cuts the wall-clock time for
    # ka-sunmd5 (on a current-generation x86-64) from fifty to nine
    # seconds, which we can live with.  sunmd5 feeds the phrase
    # verbatim to MD5_Update, only once, with no length limit, so we
    # don't need a lot of careful testing of different phrases.  We do
    # still include at least a few of the non-ASCII test phrases, and
    # one very long phrase.
    if 6 <= len(phrase) <= 128:
        return

    if rounds == 0:
        bare_setting = "$md5$" + salt
    else:
        bare_setting = "$md5,rounds={}${}".format(rounds, salt)

    suff_setting = bare_setting + "$"
    bare_cksum = raw_sun_md5_crypt(phrase, rounds, bare_setting.encode("ascii"))
    suff_cksum = raw_sun_md5_crypt(phrase, rounds, suff_setting.encode("ascii"))

    bare_cksum = bare_cksum.decode("ascii")
    suff_cksum = suff_cksum.decode("ascii")

    yield (phrase, bare_setting, bare_setting + "$" + bare_cksum)
    yield (phrase, bare_setting + "$x", bare_setting + "$" + bare_cksum)
    yield (phrase, suff_setting, suff_setting + "$" + suff_cksum)
    yield (phrase, suff_setting + "$", suff_setting + "$" + suff_cksum)

# testing bcrypt $2b$ and $2y$ is easy, but ...
BCRYPT = passlib.hash.bcrypt
BCRYPT.set_backend("builtin")
def h_bcrypt(phrase, rounds, salt):
    expected = BCRYPT.using(
        salt=salt, rounds=rounds, ident="2b"
    ).hash(phrase)
    setting = expected[:-31]
    yield (phrase, setting, expected)

def h_bcrypt_y(phrase, rounds, salt):
    expected = BCRYPT.using(
        salt=salt, rounds=rounds, ident="2y"
    ).hash(phrase)
    setting = expected[:-31]
    yield (phrase, setting, expected)

# ...passlib doesn't implement the quirks of crypt_blowfish's $2a$ or
# $2x$, but we really must test them.  It is theoretically possible to
# implement the $2x$ quirk by a transformation on the input
# passphrase, but it would be hard to get right, and the $2a$ quirk
# cannot be implemented this way.  The path of least resistance is to
# compute the $2b$ hash and then look up its output in a table of
# substitutions for each quirk.  The collision resistance of the $2b$
# hash should protect us from false hits in these tables.  (Remember
# that the $2x$ quirk is a _bug_, preserved for backward compatibility's
# sake, that causes output collisions; duplicate entries on the
# right-hand side of the $2x$ substitution table are expected.)
bcrypt_a_substitutions = {
    'HdhhdUXVgLADnbTYf12kvsasO1gS51C': '5jlqAXzFdq.3//pJFBa432Pepsclbdu',
    'caGU5ROXj4M8Tgsx3s/D5BQIuhazIWa': '7N5c8AaH.dbqz7.2o.V2mRkUDV0TZnO',
    '8jdeg8QqT4CX3ERA9vZPFZAkxZRpxJW': 'D8jTC5oJeIumVOhMVpz79BzoGVhCjrW',
    '9f4sA9SRA0scUKcRyC5kce8dao2.GKe': 'E8Lpo1/qkGPTBDBxEsJjeEzh9nkZ9uW',
    'MOaOTHB4gEm.rriBjXNwBNh.Oc4mKGG': 'ZQhQBRpiYJCaQFgyHlB.t/F01cqLCIu',
    'Qjdj3GXX7D0sFE9jji6wxSTWIhqI3US': 'euRNRfAA6e0fjpTfQPPAMU1PCOf9IHq',
    'PIeeyENZVZmrKLAq5lwBUU9fMRVfV2m': 'h87NWu/js59XXaIj1hDyHxnjw7MJ5K6',
    'VmFQpoXeVuKTzkg2ZRsAf.8PZJZg142': 'vrukkCtLqHBLoBDsz6QoBtSwzI9Qxiq',
}
def h_bcrypt_a(phrase, rounds, salt):
    base = BCRYPT.using(
        salt=salt, rounds=rounds, ident="2b"
    ).hash(phrase)
    base_setting = base[4:-31]
    base_output  = base[-31:]
    output = bcrypt_a_substitutions.get(base_output, base_output)

    setting = "$2a$" + base_setting
    expected = setting + output
    yield (phrase, setting, expected)

bcrypt_x_substitutions = {
    'xGPMyJSPyyeICKolPQ2gecm8rOgHwz.': '.sDifhVkUxvjPx6U4yeM2tC411Wuc.W',
    'SRMKxjeMqVSDMhSLhOnvtEZ/p5KhUbq': '1Z0zKnHbUU3q/kk//Pknlv19a4/T8.K',
    'PQInhDOdCKnXeUE.n/L.kQmTKM9ldK2': '25hhqa/GOJGmXui3avNI5MN8lOI2bCW',
    '7UwHe/ywPmdp.nr.ZLQSxd8hqn7qURW': '2E0h7UFL/4fALemA5ApWrCWllQXSPTu',
    'FZEYKXyyMgG13MK0uV8dwNotWf4Wm6e': '2M7Vc.sF98e8DDmnxFjRfAmrudbv6y.',
    'ZHZAnvydiPNiYH2VjRNhEAD6BEiyaWS': '3kVpkKaj1q2TAXm.ptIi98Nj3zVV8A2',
    'I7vjUzDOKf8XqcK8VSCm9b0bwoSm1Qm': '6He0iAS8JsdM.iB4OQ4fbsKMXPagLhy',
    'tLCLEXAt3RUjOgs.yvfWSni4j1JX/JS': '7bLwFi3rlVcl.xfhc7LxjqwOExfxki2',
    'zQPVIDk6wF8XmESji30KDHFabTlu0WK': '8gGm3RkYFflDX50UQs.tJ8InKNy.HGO',
    'KBv1eBM2he2T/QheS8zPHMejn5fMNRe': '8jdeg8QqT4CX3ERA9vZPFZAkxZRpxJW',
    'XEhidoDX1kz.RFnwWIzMJvtW2aP/k4e': '8jdeg8QqT4CX3ERA9vZPFZAkxZRpxJW',
    'UIzecIiCguM2sPh1F7L9IS3zOtmg5Im': '9f4sA9SRA0scUKcRyC5kce8dao2.GKe',
    'Xl2V4mQ7s0zX0b4XXH/b9UkRRCWpq3e': '9f4sA9SRA0scUKcRyC5kce8dao2.GKe',
    'tHwehGUs3q0b/Ejn42MsoM4Yv/iA1rq': '9iflVP0Ezo/iaxO0XS74wFglLNeryTS',
    'K2KXzhsMefB8v6hJJG3bOyKV.XRf6Qe': 'C3nvb4DotHdnRYgOPcdiK0C4q.DkIDO',
    'EuEnx.TyCLYgkTV/uhWL5xJTHV7ZMjG': 'HdhhdUXVgLADnbTYf12kvsasO1gS51C',
    'oaE0x.b2rUEITWgPdg.GEcU4ePHLh6m': 'IZEWKJgp.b.KG29zgOadgd2rUt5iV1e',
    '3cFqlEl7Y0HWaVLHpyyCqG8dBNk1DSm': 'IvJ5WHgSbYKj7g9hhdVsAjyzcnVT/.m',
    'gI4g/1M6K/Sz2bsgu9VDeEl6reszuXa': 'J6Y/kPTV/aHj7iJKuDfD5OPjVTvT2BK',
    'rz1efvzeJjL4mQ813hrZNg3p1.ivOii': 'MOaOTHB4gEm.rriBjXNwBNh.Oc4mKGG',
    'Tp1b9XCEV16BcrQ.0k4xf7V/OGPZLnK': 'N5E4WSTo/R5henexIN1o8xkGwe2V86W',
    'CARhc7ugFdgoPjDb7LUG.yQF2lboK6e': 'NjlOVoE5aHHQGtU9zc25wu0VykHnD1G',
    'nCdKcLO57oLlc6J6sNnGyfT9FrIawiW': 'PIeeyENZVZmrKLAq5lwBUU9fMRVfV2m',
    'DQjlTXDA5PBQ97.qBJY/vsHPQhLJDMe': 'PMOS6ygjFMSbDo.iJJam/G63inGIOBO',
    '1qOUgfpg30XDHLx/zrbWiMRcWyFhwye': 'QZ7A0p9q1Ag9Utfnfl/xif8NiDtVhO.',
    'h0JFRyDXfP0duxAkVxWGr8nMDEDvPca': 'QiT.KUY9PXgIzL2aECMKb0EvVl0Pzw6',
    'BvtRGGx3p8o0C5C36uS442Qqnrwofrq': 'Qjdj3GXX7D0sFE9jji6wxSTWIhqI3US',
    'UTFLPGm29p.YVzcY6pqejGEql1x8Ccq': 'TYqa73Yp3leHe3D6.ysuJtNLwOma87C',
    'YdPam5/ypFIyDUQMyCCEIwzVsTi0Sa6': 'TmFuGBy/Zgc6JVAr667oHeCvGQGyS1q',
    'gbhoNOH4mWxoEhRrQNdeI.rpk9XeuZS': 'UPPO3QqmgMIXGHvbOLe2IkNzHLAToY2',
    'ZkQGqjbMpqQ9oCsxNZjN8LQJaHFqPMC': 'VTMVcF7YBLV2/O6V1PNcQw0BD3hTN6a',
    'RbKkfW2ph8bd8B5yul5E97DxgDw9cT.': 'VmFQpoXeVuKTzkg2ZRsAf.8PZJZg142',
    'WI7ZNXFtzCd9mN1mWoNMQRHEmkDsZnm': 'VmFQpoXeVuKTzkg2ZRsAf.8PZJZg142',
    '2WegkGS5Xr/qYNkfEi6JmnR16WVSwcW': 'Xv3TUB0NdnMpyn4cfg4g48oZxRSIrNC',
    'LN/CEHXLfFeYdOOxbdxKu8ZqSIKgqAu': 'YdqUOXeMKw7X6zbqBXP6c1xqIKun7Oq',
    'VAQY6kySmwStlNY.sut9Y87njVr0mm.': 'Ysbn1VpHCTzInfW/z/8Q3k676rxfmSW',
    'qJn4AY9ch/WAR5JXeeJtVGeovjQrhd2': 'ZH9vItRapPbkFKo0iQqU4v71o0e19Mm',
    '4QrucGf30zIbQA.sO0d1QrU63xBrEYq': 'bqJMLkbvnTFj0OYMu9tPnQXstRzX/e6',
    'HD8RnTmGEavoR3LFVfdHvh3xA0QPka2': 'cYbtH8J2lfpMIiBKfF3pKpMno7JlLui',
    '6WgD2zYQDPgxR2sXlUeEeGKknxt95W.': 'caGU5ROXj4M8Tgsx3s/D5BQIuhazIWa',
    'rPSVExmrZ2WB1xntSbqZ/DRQRlKtVw.': 'caGU5ROXj4M8Tgsx3s/D5BQIuhazIWa',
    'PYLCOpTKZmhFn1CoBM2XNbWgqMX4Jk2': 'cxMAJfIx3T.Fv3O0KjL9VdM/oSSUVRK',
    'w8RVl3rh7sNazq544l0944qGq4GUFUq': 'fOj7giyJz5k22FHTKGVo8o1o5zGzPsq',
    'KHsCqMFVxOAGJObHwEBR3JaEdKVu1.m': 'fRmxM11/x97bxCrhecMENdkPm7YpRbe',
    '3wn02pxRJPnFwvlGt75DURDbt4g7om.': 'fY4v5x6.8txtKUKDP86z1xjlXG/GgZO',
    'k9Hv17Gha84losGKAq61csCZokj5pyy': 'gLfxf5sydYesf658mrFYb51nLrn/4Sm',
    'uTNb9MEHVGI7kd6UnQjYxgRNiKJM01S': 'h.z2vLHB/tYSU5fPXkrYB7TxLHGJnI6',
    'heAts1y/8kcTTP0/vD3yeuMX1ihF8dO': 'j72N2Fi2j3pGalOZvTqtyH3bYGotuju',
    'SqNATdQiNEckAKLsqgsKbAM5.hZoMCq': 'mjGosqV8OkKEcduYTNz5PKN2scswFya',
    'k786rdsOdUP4cRi.dLa3dsYueMj5UnS': 'nQF1kDoMDjBBwXy2wwMni2gJLKqA0ta',
    'G6PeIXKiqeNUPUbqFkMJvvI7G9hd51W': 'oBvt6zJCTP5OED1esTYUYPn31cWqwsa',
    'TszY8.avBpwJ6xbNjwws3SKBbK6kj6S': 'odAvHZH9azlhi1x4pBLF25.hj08RMFi',
    'z4QFggBRTVUeHRGL/CQxlAYHraYPcpa': 'ojiyBkc.4HZ2y5Yh0LxBbI6ZkLiRg0C',
    'PPtdI0NcxZ4Txyv/Y5ORfcP1XFriKT2': 'pjce7u/YRnectNa8DXjsSGzRdyH2PSG',
    'uIZ1Lgb.jHRDU/Z/LVXfpQCK72fTEHq': 'q5NMeQZ0UTyP/bILj02wdQ.Si5KHU1K',
    '51cV.PJOQVwmiao4t4lXsb9Cc3Jnuem': 'rB3dV.fJGdSihNlP0vo5PemoaZRp6LS',
    's6h1E6A2RzVn2KxXLQXsKosQeRo8bLa': 'sND7G4.cx6Dzn6TqbXfK99bElU0a7P.',
    'A96emG/jBf0K1K6vCG.eZGdLkSridom': 'tlD3cmtHgs/TwWAvy5E3F.freZS1bau',
    'hWYb0x3Q3zM0aBkB2G1arbzmWxRQS/i': 'whpbcVuyGrJbgveSSM3XQKa8G5alyRm',
    'AqM0XavJxJXeVlJ3Te3umGJaPOCYmZi': 'xP2lldc1.10LvZDjJZXNBKLzWqnkbOa',
    'UPBzTBMwJb5mKWflQ.5Rid4481RrxVy': 'xSD.pz8Zg3vt0Jiovghl5Dqrs8aw8ni',
    'yM59Cq5iVZDB3u45gTNhRSnOgrY1tdG': 'yED5tIjzyeH90te88BUWvTrMFHsWgCi',
    'k.qekGiJym3QgfeFCwNhPHg0Zk99KSa': 'yphVralDu2JlxYbCqwwGli/H6wBgBtC',
    'iYbzuFNFwSfCgqTGNsUFtSDh8PJAqSe': 'zAUUWh4XGsBGYs6yyUJTSfEgzoLXO6G',
}
def h_bcrypt_x(phrase, rounds, salt):
    base = BCRYPT.using(
        salt=salt, rounds=rounds, ident="2b"
    ).hash(phrase)
    base_setting = base[4:-31]
    base_output  = base[-31:]
    output = bcrypt_x_substitutions.get(base_output, base_output)

    setting = "$2x$" + base_setting
    expected = setting + output
    yield (phrase, setting, expected)

# passlib includes an scrypt implementation, but its encoded password
# format is not the $7$ format we implement, so instead we use the
# stdlib's hashlib.scrypt (this is why 3.6+ is required) and encode
# the setting string by hand.  This may produce strings encoding N/r/p
# combinations that don't normally occur in the wild, but that's OK.
# The algorithm implemented by hashlib.scrypt is standardized as
# RFC 7914, so it's not an issue where that implementation came from.
# Yes, the salt is properly passed to raw_scrypt as-is.
from hashlib import scrypt as raw_scrypt
from passlib.utils.binary import h64 as hash64
def h_scrypt(phrase, rounds, salt):
    p = 1
    r = 8
    log2N = rounds + 7
    N = 1 << log2N

    bytesalt = salt.encode("ascii")
    setting = (b"$7$" +
               hash64.encode_int6(log2N) +
               hash64.encode_int30(r) +
               hash64.encode_int30(p) +
               bytesalt)

    binhash = raw_scrypt(phrase, salt=bytesalt, p=p, r=r, n=N, dklen=32)

    yield (phrase, setting, setting + b'$' + hash64.encode_bytes(binhash))

#
# passlib does not support either yescrypt or gost-yescrypt.  In fact,
# as far as I can tell, at the time of writing, there exists only one
# implementation of yescrypt and gost-yescrypt, by Solar Designer et al
# which is the code we use ourselves.  However, a test for round-
# trippability and API consistency is still worthwhile, as is a test
# that the implementation's current behavior is compatible with its
# behavior some time ago.  Therefore, we encode setting strings by
# hand, and ctypes is used to access crypt_ra in the just-built
# libcrypt.so.  This will only work if the library was configured with
# --enable-hashes=yescrypt,gost-yescrypt,[others] and --enable-shared,
# which is OK, since it's not run during a normal build.  Remove this
# once passlib supports these hashes.
#
# crypt_ra is used because it's thread-safe but doesn't require us to
# know how big struct crypt_data is.  There is no good way to arrange
# for the data object to be deallocated.  Oh well.
LIBCRYPT = ctypes.cdll.LoadLibrary(os.path.join(os.getcwd(), ".libs",
                                                "libcrypt.so"))
_xcrypt_crypt_ra = LIBCRYPT.crypt_ra
_xcrypt_crypt_ra.argtypes = [ctypes.c_char_p, ctypes.c_char_p,
                             ctypes.POINTER(ctypes.c_void_p),
                             ctypes.POINTER(ctypes.c_int)]
_xcrypt_crypt_ra.restype = ctypes.c_char_p
_xcrypt_crypt_ra_data = ctypes.c_void_p(0)
_xcrypt_crypt_ra_datasize = ctypes.c_int(0)

def xcrypt_crypt(phrase, setting):
    global _xcrypt_crypt_ra_data, _xcrypt_crypt_ra_datasize
    if not isinstance(phrase, bytes): phrase = phrase.encode("utf-8")
    if not isinstance(setting, bytes): setting = setting.encode("ascii")
    rv = _xcrypt_crypt_ra(phrase, setting,
                          ctypes.byref(_xcrypt_crypt_ra_data),
                          ctypes.byref(_xcrypt_crypt_ra_datasize))
    if not rv:
        err = ctypes.get_errno()
        raise OSError(err, os.strerror(err))
    return bytes(rv)

def yescrypt_gensalt(ident, rounds, salt):
    if rounds == 1:
        params = "j75"
    elif rounds == 2:
        params = "j85"
    else:
        raise RuntimeError("don't know how to encode rounds={}"
                           .format(rounds))

    return "${}${}${}".format(ident, params, salt)

def h_yescrypt(phrase, rounds, salt):
    setting = yescrypt_gensalt("y", rounds, salt)
    yield (phrase, setting, xcrypt_crypt(phrase, setting))

def h_gost_yescrypt(phrase, rounds, salt):
    setting = yescrypt_gensalt("gy", rounds, salt)
    yield (phrase, setting, xcrypt_crypt(phrase, setting))

# Each method should contribute a group of parameters to the array
# below.  Each block has the form
#
#  ('method', [
#     (rounds, salt),
#     (rounds, salt),
#     ...
#  ])
#
# where 'method' is the method name used in the INCLUDE_ macros,
# rounds is a number and salt is a salt string.  The appropriate
# h_method function will be called with arguments (phrase, *params)
# where params is one of the tuples from its block, so it is OK to add
# extra arguments after the salt if necessary.
#
# If the method has a tunable rounds parameter, its array of
# (rounds, salt) pairs should have two salts * at least two values of
# the rounds parameter.  If it does not, it should have two salts and
# use 0 for the rounds parameter.
#
# The point of this test is not to exercise brute force resistance,
# so keep cost parameters low.
#
# Methods should be in alphabetical order by their INCLUDE_macro name.

SETTINGS = [
    ('bcrypt', [
        (5, 'CCCCCCCCCCCCCCCCCCCCC.'),
        (5, 'abcdefghijklmnopqrstuu'),
        (4, 'CCCCCCCCCCCCCCCCCCCCC.'),
        (4, 'abcdefghijklmnopqrstuu'),
    ]),

    ('bcrypt_y', [
        (5, 'CCCCCCCCCCCCCCCCCCCCC.'),
        (5, 'abcdefghijklmnopqrstuu'),
        (4, 'CCCCCCCCCCCCCCCCCCCCC.'),
        (4, 'abcdefghijklmnopqrstuu'),
    ]),

    ('bcrypt_a', [
        (5, 'CCCCCCCCCCCCCCCCCCCCC.'),
        (5, 'abcdefghijklmnopqrstuu'),
        (4, 'CCCCCCCCCCCCCCCCCCCCC.'),
        (4, 'abcdefghijklmnopqrstuu'),
    ]),

    ('bcrypt_x', [
        (5, 'CCCCCCCCCCCCCCCCCCCCC.'),
        (5, 'abcdefghijklmnopqrstuu'),
        (4, 'CCCCCCCCCCCCCCCCCCCCC.'),
        (4, 'abcdefghijklmnopqrstuu'),
    ]),

    ('bigcrypt', [
        (0, 'CC'),
        (0, 'ab'),
    ]),

    # The bsdicrypt round count is required to be odd.
    ('bsdicrypt', [
        (1, 'CCCC'),
        (1, 'abcd'),
        (13, 'CCCC'),
        (13, 'abcd'),
    ]),

    ('descrypt', [
        (0, 'CC'),
        (0, 'ab'),
    ]),

    ('gost_yescrypt', [
        (1, '.......'),
        (1, 'LdJMENpBABJJ3hIHjB1Bi.'),
        (2, '.......'),
        (2, 'LdJMENpBABJJ3hIHjB1Bi.'),
    ]),

    ('md5crypt', [
        (0, 'CCCCCCCC'),
        (0, 'abcdefgh'),
    ]),

    ('nt', [
        (0, ''),
    ]),

    ('scrypt', [
        (1, 'SodiumChloride'),
        (1, 'unUNunUNunUNun'),
        (2, 'SodiumChloride'),
        (2, 'unUNunUNunUNun'),
    ]),

    ('sha1crypt', [
        (12, 'GGXpNqoJvglVTkGU'),
        (12, 'xSZGpk6Bp4SA3.cR'),
        (456, 'GGXpNqoJvglVTkGU'),
        (456, 'xSZGpk6Bp4SA3.cR'),
    ]),

    ('sha256crypt', [
        (1000, 'saltstring'),
        (1000, 'short'),
        (5000, 'saltstring'),
        (5000, 'short'),
    ]),

    ('sha512crypt', [
        (1000, 'saltstring'),
        (1000, 'short'),
        (5000, 'saltstring'),
        (5000, 'short'),
    ]),

    ('sunmd5', [
        (0, '9ZLwtuTO'),
        (0, '1xMeE.at'),
        (12, '9ZLwtuTO'),
        (12, '1xMeE.at'),
    ]),

    ('yescrypt', [
        (1, '.......'),
        (1, 'LdJMENpBABJJ3hIHjB1Bi.'),
        (2, '.......'),
        (2, 'LdJMENpBABJJ3hIHjB1Bi.'),
    ]),
]

# Normally, we expect that (1) for fixed salt, no two phrases hash to
# the same string; (2) for fixed phrase, no two settings produce the
# same string.  The known exceptions are all due to limitations and/or
# bugs in the hashing method.  Check the table produced by this
# program to ensure that all of the collisions in the ->expected
# strings are due to one of the known exceptions.  test-crypt-kat.c
# itself doesn't need to do this test; as long as all of the hashes
# produced by the just-built crypt() match the appropriate ->expected
# string, no new collisions can have been introduced.

def strneq_7bit (p1, p2, limit):
    n1 = len(p1)
    n2 = len(p2)
    for i in range(limit):
        if i == n1 and i == n2:
            # strings are the same length, within the limit, and no
            # mismatched characters were found
            return True
        if i == n1 or i == n2:
            # one string is longer than the other, within the limit
            return False
        if (p1[i] & 0x7F) != (p2[i] & 0x7F):
            # characters not equal, after masking the 8th bit
            return False
    # reached the limit, no mismatches found
    return True

# The bug in bcrypt mode "x" (preserved from the original
# implementation of bcrypt) is, at its root, that the code below
# sign- rather than zero-extends *p before or-ing it into 'tmp'.
# When *p has its 8th bit set, it is therefore or-ed in as
# 0xFF_FF_FF_xx rather than 0x00_00_00_xx, and clobbers the other
# three bytes in 'tmp'.  Depending on its position within the input,
# this can erase up to three other characters of the passphrase.
# The exact set of strings involved in any one group of collisions is
# difficult to describe in words and may depend on the endianness of
# the CPU.  The test cases in this file have only been verified on
# a little-endian CPU.
BF_KEY_LEN  = 18

def buggy_expand_BF_key(phrase):
    p = 0
    lp = len(phrase)
    expanded = [0]*BF_KEY_LEN
    if lp > 0:
        for i in range(BF_KEY_LEN):
            tmp = 0
            for j in range(4):
                if p == lp:
                    c = 0
                else:
                    c = phrase[p]
                stmp = ((c & 0x7F) - (c & 0x80)) & 0xFFFFFFFF
                tmp = ((tmp << 8) | stmp) & 0xFFFFFFFF
                p += 1
                if p == lp + 1:
                    p = 0
            expanded[i] = tmp
    return expanded

def sign_extension_collision_p(p1, p2):
    return buggy_expand_BF_key(p1) == buggy_expand_BF_key(p2)

def equivalent_sunmd5_settings_p(s1, s2):
    if s1[:4] != "$md5": return False
    if s2[:4] != "$md5": return False

    l1 = len(s1)
    l2 = len(s2)
    if l1 < l2:
        ll = l1
        lh = l2
        sl = s1
        sh = s2
    else:
        ll = l2
        lh = l1
        sl = s2
        sh = s1
    if sl[:ll] != sh[:ll]:
        return False

    # The two cases where sunmd5 settings are equivalent:
    # $md5...$ and $md5...$$
    # $md5...  and $md5...$x
    if sl[ll-1] == '$':
        if ll+1 != lh or sh[ll] != '$':
            return False
    else:
        if ll+2 != lh or sh[ll] != '$' or sh[ll+1] != 'x':
            return False
    return True

def collision_expected(p1, p2, s1, s2):
    if not isinstance(p1, bytes): p1 = p1.encode("iso_8859_1")
    if not isinstance(p2, bytes): p2 = p2.encode("iso_8859_1")
    if isinstance(s1, bytes):     s1 = s1.decode("ascii")
    if isinstance(s2, bytes):     s2 = s2.decode("ascii")
    # Under no circumstances should two hashes with different settings
    # collide, except...
    if s1 != s2:
        # a descrypt hash can collide with a bigcrypt hash when the phrase
        # input to bigcrypt was fewer than 8 characters long
        if (    s1[0] != '$' and s1[0] != '_'
            and s2[0] != '$' and s2[0] != '_'
            and (   (len(s1) == 2 and len(s2) > 2 and len(p2) <= 8)
                 or (len(s2) == 2 and len(s1) > 2 and len(p1) <= 8))):
            return strneq_7bit(p1, p2, 8)

        # all settings for NTHASH are equivalent
        if s1[:3] == '$3$' and s2[:3] == '$3$':
            return p1 == p2

        # sunmd5 has pairs of equivalent settings
        if equivalent_sunmd5_settings_p (s1, s2):
            return p1 == p2

        return False

    if s1[:2] == '$2':
        # bcrypt truncates passphrases to 72 characters
        if p1[:72] == p2[:72]:
            return True
        # preserved bcrypt $2x bug?
        if s1[:3] == '$2x' and sign_extension_collision_p(p1, p2):
            return True
        return False

    if s1[0] != '$' and s1[0] != '_':
        if len(s1) == 2:
            # descrypt truncates passphrases to 8 characters and strips the
            # 8th bit
            return strneq_7bit(p1, p2, 8)
        else:
            # bigcrypt truncates passphrases to 128 characters and strips the
            # 8th bit
            return strneq_7bit(p1, p2, 128)

    if s1[0] == '_':
        # bsdicrypt does not truncate but does still strip the 8th bit
        return strneq_7bit(p1, p2, max(len(p1), len(p2)))

    return False

def report_unexpected_collision(p1, p2, s1, s2, expected):
    sys.stderr.write("UNEXPECTED HASH COLLISION:\n"
                     "  hash = {}\n"
                     "    p1 = {!r}\n"
                     "    p2 = {!r}\n"
                     "    s1 = {!r}\n"
                     "    s2 = {!r}\n"
                     "\n".format(expected, p1, p2, s1, s2))

# Master control.
#
# To reduce the painful slowness of this program _somewhat_,
# we use a multiprocessing pool to compute all of the hashes.

def generate_phrase_setting_combs():
    for macro_name, settings in SETTINGS:
        for phrase in PHRASES:
            for setting in settings:
                yield (macro_name, phrase, setting)

def worker_compute_one(args):
    method, phrase, setting = args

    import __main__
    sfunc = getattr(__main__, 'h_' + method)
    return [(method, case) for case in sfunc(phrase, *setting)]

# Python specifies that an \x escape in a string literal consumes
# exactly two subsequent hexadecimal digits.  C, on the other hand,
# specifies that \x in a string literal consumes *any number of*
# hexadecimal digits, and if the hexadecimal number is larger than the
# range representable by 'unsigned char' the result is
# implementation-defined.  For instance, "\x303" == "03" in Python,
# but in C the string on the left could be anything.  The simplest way
# to deal with this is to escape the string Python's way and then
# replace sequences like '\x303' with '\x30""3'.
c_hex_escape_fixup_re_ = re.compile(
    r"(\\x[0-9a-fA-F]{2})([0-9a-fA-F])")

def c_hex_escape(s):
    if isinstance(s, bytes):
        s = s.decode("iso_8859_1")
    s = s.encode("unicode_escape").decode("ascii")

    return c_hex_escape_fixup_re_.sub(r'\1""\2', s)

def format_case(phrase, setting, expected):
    return ('  {{ "{}", "{}", "{}" }},\n'
            .format(c_hex_escape(setting),
                    c_hex_escape(expected),
                    c_hex_escape(phrase)))

def main():
    # FIXME: This only detects collisions that actually happen, not
    # collisions that ought to have happened but didn't.  (Detecting
    # collisions that ought to have happened, but didn't, would be
    # unavoidably quadratic in the total number of test cases, so I'm
    # not sure it's worth it.)
    items = []
    collisions = {}
    collision_error = False
    with multiprocessing.Pool() as pool:
        for group in pool.imap(worker_compute_one,
                               generate_phrase_setting_combs(),
                               chunksize=100):
            for method, (phrase, setting, expected) in group:
                if expected in collisions:
                    p1, s1 = collisions[expected]
                    if not collision_expected(p1, phrase, s1, setting):
                        report_unexpected_collision(p1, phrase, s1, setting,
                                                    expected)
                        collision_error = True
                else:
                    collisions[expected] = (phrase, setting)
                items.append((method, format_case(phrase, setting, expected)))

    if collision_error:
        sys.exit(1)

    sys.stdout.write(
        "/* Known-answer tests for passphrase hashes.  -*- mode: c -*-\n"
        "   Automatically generated by ka-table-gen.py.\n"
        "   Do not edit this file by hand.  */\n\n")

    prev_method = None
    for method, case in items:
        if method != prev_method:
            if prev_method is not None:
                sys.stdout.write("#endif // {}\n\n".format(prev_method))
            sys.stdout.write("#if INCLUDE_{} && defined TEST_{}\n"
                             .format(method, method))
            prev_method = method
        sys.stdout.write(case)

    if prev_method is not None:
        sys.stdout.write("#endif // {}\n".format(prev_method))

if __name__ == '__main__':
    main()