1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
/*
* FreeSec: libcrypt for NetBSD
*
* Copyright (c) 1994 David Burren
* All rights reserved.
*
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
* this file should now *only* export crypt(), in order to make
* binaries of libcrypt exportable from the USA
*
* Adapted for FreeBSD-4.0 by Mark R V Murray
* this file should now *only* export crypt_des(), in order to make
* a module that can be optionally included in libcrypt.
*
* Adapted for libxcrypt by Zack Weinberg, 2017
* writable global data eliminated; type-punning eliminated;
* des_init() run at build time (see des-mktables.c);
* made into a libxcrypt algorithm module (see des-crypt.c);
* functionality required to support the legacy encrypt() and
* setkey() primitives re-exposed (see des-obsolete.c).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of other contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This is an original implementation of the DES and the crypt(3) interfaces
* by David Burren <davidb@werj.com.au>.
*
* An excellent reference on the underlying algorithm (and related
* algorithms) is:
*
* B. Schneier, Applied Cryptography: protocols, algorithms,
* and source code in C, John Wiley & Sons, 1994.
*
* Note that in that book's description of DES the lookups for the initial,
* pbox, and final permutations are inverted (this has been brought to the
* attention of the author). A list of errata for this book has been
* posted to the sci.crypt newsgroup by the author and is available for FTP.
*/
#include "crypt-port.h"
#if INCLUDE_descrypt || INCLUDE_bigcrypt || INCLUDE_bsdicrypt
#include "alg-des.h"
#include "byteorder.h"
static const uint8_t key_shifts[16] =
{
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
void
des_set_key (struct des_ctx *restrict ctx,
const unsigned char key[MIN_SIZE(8)])
{
uint32_t rawkey0, rawkey1, k0, k1, t0, t1;
int shifts, round;
rawkey0 = be32_to_cpu (&key[0]);
rawkey1 = be32_to_cpu (&key[4]);
/* Do key permutation and split into two 28-bit subkeys. */
k0 = key_perm_maskl[0][(rawkey0 >> 25) & 0x7f]
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
| key_perm_maskl[4][(rawkey1 >> 25) & 0x7f]
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
k1 = key_perm_maskr[0][(rawkey0 >> 25) & 0x7f]
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
| key_perm_maskr[4][(rawkey1 >> 25) & 0x7f]
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
/* Rotate subkeys and do compression permutation. */
shifts = 0;
for (round = 0; round < 16; round++)
{
shifts += key_shifts[round];
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
ctx->keysl[round] =
comp_maskl[0][(t0 >> 21) & 0x7f]
| comp_maskl[1][(t0 >> 14) & 0x7f]
| comp_maskl[2][(t0 >> 7) & 0x7f]
| comp_maskl[3][(t0 >> 0) & 0x7f]
| comp_maskl[4][(t1 >> 21) & 0x7f]
| comp_maskl[5][(t1 >> 14) & 0x7f]
| comp_maskl[6][(t1 >> 7) & 0x7f]
| comp_maskl[7][(t1 >> 0) & 0x7f];
ctx->keysr[round] =
comp_maskr[0][(t0 >> 21) & 0x7f]
| comp_maskr[1][(t0 >> 14) & 0x7f]
| comp_maskr[2][(t0 >> 7) & 0x7f]
| comp_maskr[3][(t0 >> 0) & 0x7f]
| comp_maskr[4][(t1 >> 21) & 0x7f]
| comp_maskr[5][(t1 >> 14) & 0x7f]
| comp_maskr[6][(t1 >> 7) & 0x7f]
| comp_maskr[7][(t1 >> 0) & 0x7f];
}
}
void
des_set_salt (struct des_ctx *restrict ctx, uint32_t salt)
{
uint32_t obit, saltbit, saltbits;
int i;
saltbits = 0L;
saltbit = 1;
obit = 0x800000;
for (i = 0; i < 24; i++)
{
if (salt & saltbit)
saltbits |= obit;
saltbit <<= 1;
obit >>= 1;
}
ctx->saltbits = saltbits;
}
void
des_crypt_block (struct des_ctx *restrict ctx,
unsigned char *out, const unsigned char *in,
unsigned int count, bool decrypt)
{
uint32_t l_in, r_in, l_out, r_out;
uint32_t l, r, *kl, *kr, *kl1, *kr1;
uint32_t f, r48l, r48r;
uint32_t saltbits = ctx->saltbits;
int round, rk_step;
/* Zero encryptions/decryptions doesn't make sense. */
if (count == 0)
count = 1;
if (decrypt)
{
kl1 = ctx->keysl + 15;
kr1 = ctx->keysr + 15;
rk_step = -1;
}
else
{
kl1 = ctx->keysl;
kr1 = ctx->keysr;
rk_step = 1;
}
/* Read the input, which is notionally in "big-endian" format. */
l_in = be32_to_cpu (in);
r_in = be32_to_cpu (in + 4);
/* Do initial permutation. */
l = ip_maskl[0][(l_in >> 24) & 0xff]
| ip_maskl[1][(l_in >> 16) & 0xff]
| ip_maskl[2][(l_in >> 8) & 0xff]
| ip_maskl[3][(l_in >> 0) & 0xff]
| ip_maskl[4][(r_in >> 24) & 0xff]
| ip_maskl[5][(r_in >> 16) & 0xff]
| ip_maskl[6][(r_in >> 8) & 0xff]
| ip_maskl[7][(r_in >> 0) & 0xff];
r = ip_maskr[0][(l_in >> 24) & 0xff]
| ip_maskr[1][(l_in >> 16) & 0xff]
| ip_maskr[2][(l_in >> 8) & 0xff]
| ip_maskr[3][(l_in >> 0) & 0xff]
| ip_maskr[4][(r_in >> 24) & 0xff]
| ip_maskr[5][(r_in >> 16) & 0xff]
| ip_maskr[6][(r_in >> 8) & 0xff]
| ip_maskr[7][(r_in >> 0) & 0xff];
do
{
kl = kl1;
kr = kr1;
round = 16;
do
{
/* Expand R to 48 bits (simulate the E-box). */
r48l = ((r & 0x00000001) << 23)
| ((r & 0xf8000000) >> 9)
| ((r & 0x1f800000) >> 11)
| ((r & 0x01f80000) >> 13)
| ((r & 0x001f8000) >> 15);
r48r = ((r & 0x0001f800) << 7)
| ((r & 0x00001f80) << 5)
| ((r & 0x000001f8) << 3)
| ((r & 0x0000001f) << 1)
| ((r & 0x80000000) >> 31);
/* Apply salt and permuted round key. */
f = (r48l ^ r48r) & saltbits;
r48l ^= f ^ *kl;
r48r ^= f ^ *kr;
kl += rk_step;
kr += rk_step;
/* Do sbox lookups (which shrink it back to 32 bits)
and the pbox permutation at the same time. */
f = psbox[0][m_sbox[0][r48l >> 12]]
| psbox[1][m_sbox[1][r48l & 0xfff]]
| psbox[2][m_sbox[2][r48r >> 12]]
| psbox[3][m_sbox[3][r48r & 0xfff]];
/* Now that we've permuted things, complete f(). */
f ^= l;
l = r;
r = f;
}
while (--round);
r = l;
l = f;
}
while (--count);
/* Do final permutation (inverse of IP). */
l_out =
fp_maskl[0][(l >> 24) & 0xff]
| fp_maskl[1][(l >> 16) & 0xff]
| fp_maskl[2][(l >> 8) & 0xff]
| fp_maskl[3][(l >> 0) & 0xff]
| fp_maskl[4][(r >> 24) & 0xff]
| fp_maskl[5][(r >> 16) & 0xff]
| fp_maskl[6][(r >> 8) & 0xff]
| fp_maskl[7][(r >> 0) & 0xff];
r_out =
fp_maskr[0][(l >> 24) & 0xff]
| fp_maskr[1][(l >> 16) & 0xff]
| fp_maskr[2][(l >> 8) & 0xff]
| fp_maskr[3][(l >> 0) & 0xff]
| fp_maskr[4][(r >> 24) & 0xff]
| fp_maskr[5][(r >> 16) & 0xff]
| fp_maskr[6][(r >> 8) & 0xff]
| fp_maskr[7][(r >> 0) & 0xff];
cpu_to_be32 (out, l_out);
cpu_to_be32 (out + 4, r_out);
}
#endif
|