summaryrefslogtreecommitdiff
path: root/lib/mathops.c
blob: d3fb9091941c35704983419fafc83683fc40a164 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include "mathops.h"
#include <limits.h>

/*The fastest fallback strategy for platforms with fast multiplication appears
   to be based on de Bruijn sequences~\cite{LP98}.
  Tests confirmed this to be true even on an ARM11, where it is actually faster
   than using the native clz instruction.
  Define OC_ILOG_NODEBRUIJN to use a simpler fallback on platforms where
   multiplication or table lookups are too expensive.

  @UNPUBLISHED{LP98,
    author="Charles E. Leiserson and Harald Prokop",
    title="Using de {Bruijn} Sequences to Index a 1 in a Computer Word",
    month=Jun,
    year=1998,
    note="\url{http://supertech.csail.mit.edu/papers/debruijn.pdf}"
  }*/
#if !defined(OC_ILOG_NODEBRUIJN)&& \
 !defined(OC_CLZ32)||!defined(OC_CLZ64)&&LONG_MAX<9223372036854775807LL
static const unsigned char OC_DEBRUIJN_IDX32[32]={
   0, 1,28, 2,29,14,24, 3,30,22,20,15,25,17, 4, 8,
  31,27,13,23,21,19,16, 7,26,12,18, 6,11, 5,10, 9
};
#endif

int oc_ilog32(ogg_uint32_t _v){
#if defined(OC_CLZ32)
  return (OC_CLZ32_OFFS-OC_CLZ32(_v))&-!!_v;
#else
/*On a Pentium M, this branchless version tested as the fastest version without
   multiplications on 1,000,000,000 random 32-bit integers, edging out a
   similar version with branches, and a 256-entry LUT version.*/
# if defined(OC_ILOG_NODEBRUIJN)
  int ret;
  int m;
  ret=_v>0;
  m=(_v>0xFFFFU)<<4;
  _v>>=m;
  ret|=m;
  m=(_v>0xFFU)<<3;
  _v>>=m;
  ret|=m;
  m=(_v>0xFU)<<2;
  _v>>=m;
  ret|=m;
  m=(_v>3)<<1;
  _v>>=m;
  ret|=m;
  ret+=_v>1;
  return ret;
/*This de Bruijn sequence version is faster if you have a fast multiplier.*/
# else
  int ret;
  ret=_v>0;
  _v|=_v>>1;
  _v|=_v>>2;
  _v|=_v>>4;
  _v|=_v>>8;
  _v|=_v>>16;
  _v=(_v>>1)+1;
  ret+=OC_DEBRUIJN_IDX32[_v*0x77CB531U>>27&0x1F];
  return ret;
# endif
#endif
}

int oc_ilog64(ogg_int64_t _v){
#if defined(OC_CLZ64)
  return (OC_CLZ64_OFFS-OC_CLZ64(_v))&-!!_v;
#else
# if defined(OC_ILOG_NODEBRUIJN)
  ogg_uint32_t v;
  int          ret;
  int          m;
  ret=_v>0;
  m=(_v>0xFFFFFFFFU)<<5;
  v=(ogg_uint32_t)(_v>>m);
  ret|=m;
  m=(v>0xFFFFU)<<4;
  v>>=m;
  ret|=m;
  m=(v>0xFFU)<<3;
  v>>=m;
  ret|=m;
  m=(v>0xFU)<<2;
  v>>=m;
  ret|=m;
  m=(v>3)<<1;
  v>>=m;
  ret|=m;
  ret+=v>1;
  return ret;
# else
/*If we don't have a 64-bit word, split it into two 32-bit halves.*/
#  if LONG_MAX<9223372036854775807LL
  ogg_uint32_t v;
  int          ret;
  int          m;
  ret=_v>0;
  m=(_v>0xFFFFFFFFU)<<5;
  v=(ogg_uint32_t)(_v>>m);
  ret|=m;
  v|=v>>1;
  v|=v>>2;
  v|=v>>4;
  v|=v>>8;
  v|=v>>16;
  v=(v>>1)+1;
  ret+=OC_DEBRUIJN_IDX32[v*0x77CB531U>>27&0x1F];
  return ret;
/*Otherwise do it in one 64-bit operation.*/
#  else
  static const unsigned char OC_DEBRUIJN_IDX64[64]={
     0, 1, 2, 7, 3,13, 8,19, 4,25,14,28, 9,34,20,40,
     5,17,26,38,15,46,29,48,10,31,35,54,21,50,41,57,
    63, 6,12,18,24,27,33,39,16,37,45,47,30,53,49,56,
    62,11,23,32,36,44,52,55,61,22,43,51,60,42,59,58
  };
  int ret;
  ret=_v>0;
  _v|=_v>>1;
  _v|=_v>>2;
  _v|=_v>>4;
  _v|=_v>>8;
  _v|=_v>>16;
  _v|=_v>>32;
  _v=(_v>>1)+1;
  ret+=OC_DEBRUIJN_IDX64[_v*0x218A392CD3D5DBF>>58&0x3F];
  return ret;
#  endif
# endif
#endif
}

/*round(2**(62+i)*atanh(2**(-(i+1)))/log(2))*/
static const ogg_int64_t OC_ATANH_LOG2[32]={
  0x32B803473F7AD0F4LL,0x2F2A71BD4E25E916LL,0x2E68B244BB93BA06LL,
  0x2E39FB9198CE62E4LL,0x2E2E683F68565C8FLL,0x2E2B850BE2077FC1LL,
  0x2E2ACC58FE7B78DBLL,0x2E2A9E2DE52FD5F2LL,0x2E2A92A338D53EECLL,
  0x2E2A8FC08F5E19B6LL,0x2E2A8F07E51A485ELL,0x2E2A8ED9BA8AF388LL,
  0x2E2A8ECE2FE7384ALL,0x2E2A8ECB4D3E4B1ALL,0x2E2A8ECA94940FE8LL,
  0x2E2A8ECA6669811DLL,0x2E2A8ECA5ADEDD6ALL,0x2E2A8ECA57FC347ELL,
  0x2E2A8ECA57438A43LL,0x2E2A8ECA57155FB4LL,0x2E2A8ECA5709D510LL,
  0x2E2A8ECA5706F267LL,0x2E2A8ECA570639BDLL,0x2E2A8ECA57060B92LL,
  0x2E2A8ECA57060008LL,0x2E2A8ECA5705FD25LL,0x2E2A8ECA5705FC6CLL,
  0x2E2A8ECA5705FC3ELL,0x2E2A8ECA5705FC33LL,0x2E2A8ECA5705FC30LL,
  0x2E2A8ECA5705FC2FLL,0x2E2A8ECA5705FC2FLL
};

/*Computes the binary exponential of _z, a log base 2 in Q57 format.*/
ogg_int64_t oc_bexp64(ogg_int64_t _z){
  ogg_int64_t w;
  ogg_int64_t z;
  int         ipart;
  ipart=(int)(_z>>57);
  if(ipart<0)return 0;
  if(ipart>=63)return 0x7FFFFFFFFFFFFFFFLL;
  z=_z-OC_Q57(ipart);
  if(z){
    ogg_int64_t mask;
    long        wlo;
    int         i;
    /*C doesn't give us 64x64->128 muls, so we use CORDIC.
      This is not particularly fast, but it's not being used in time-critical
       code; it is very accurate.*/
    /*z is the fractional part of the log in Q62 format.
      We need 1 bit of headroom since the magnitude can get larger than 1
       during the iteration, and a sign bit.*/
    z<<=5;
    /*w is the exponential in Q61 format (since it also needs headroom and can
       get as large as 2.0); we could get another bit if we dropped the sign,
       but we'll recover that bit later anyway.
      Ideally this should start out as
        \lim_{n->\infty} 2^{61}/\product_{i=1}^n \sqrt{1-2^{-2i}}
       but in order to guarantee convergence we have to repeat iterations 4,
        13 (=3*4+1), and 40 (=3*13+1, etc.), so it winds up somewhat larger.*/
    w=0x26A3D0E401DD846DLL;
    for(i=0;;i++){
      mask=-(z<0);
      w+=(w>>i+1)+mask^mask;
      z-=OC_ATANH_LOG2[i]+mask^mask;
      /*Repeat iteration 4.*/
      if(i>=3)break;
      z<<=1;
    }
    for(;;i++){
      mask=-(z<0);
      w+=(w>>i+1)+mask^mask;
      z-=OC_ATANH_LOG2[i]+mask^mask;
      /*Repeat iteration 13.*/
      if(i>=12)break;
      z<<=1;
    }
    for(;i<32;i++){
      mask=-(z<0);
      w+=(w>>i+1)+mask^mask;
      z=z-(OC_ATANH_LOG2[i]+mask^mask)<<1;
    }
    wlo=0;
    /*Skip the remaining iterations unless we really require that much
       precision.
      We could have bailed out earlier for smaller iparts, but that would
       require initializing w from a table, as the limit doesn't converge to
       61-bit precision until n=30.*/
    if(ipart>30){
      /*For these iterations, we just update the low bits, as the high bits
         can't possibly be affected.
        OC_ATANH_LOG2 has also converged (it actually did so one iteration
         earlier, but that's no reason for an extra special case).*/
      for(;;i++){
        mask=-(z<0);
        wlo+=(w>>i)+mask^mask;
        z-=OC_ATANH_LOG2[31]+mask^mask;
        /*Repeat iteration 40.*/
        if(i>=39)break;
        z<<=1;
      }
      for(;i<61;i++){
        mask=-(z<0);
        wlo+=(w>>i)+mask^mask;
        z=z-(OC_ATANH_LOG2[31]+mask^mask)<<1;
      }
    }
    w=(w<<1)+wlo;
  }
  else w=(ogg_int64_t)1<<62;
  if(ipart<62)w=(w>>61-ipart)+1>>1;
  return w;
}

/*Computes the binary logarithm of _w, returned in Q57 format.*/
ogg_int64_t oc_blog64(ogg_int64_t _w){
  ogg_int64_t z;
  int         ipart;
  if(_w<=0)return -1;
  ipart=OC_ILOGNZ_64(_w)-1;
  if(ipart>61)_w>>=ipart-61;
  else _w<<=61-ipart;
  z=0;
  if(_w&_w-1){
    ogg_int64_t x;
    ogg_int64_t y;
    ogg_int64_t u;
    ogg_int64_t mask;
    int         i;
    /*C doesn't give us 64x64->128 muls, so we use CORDIC.
      This is not particularly fast, but it's not being used in time-critical
       code; it is very accurate.*/
    /*z is the fractional part of the log in Q61 format.*/
    /*x and y are the cosh() and sinh(), respectively, in Q61 format.
      We are computing z=2*atanh(y/x)=2*atanh((_w-1)/(_w+1)).*/
    x=_w+((ogg_int64_t)1<<61);
    y=_w-((ogg_int64_t)1<<61);
    for(i=0;i<4;i++){
      mask=-(y<0);
      z+=(OC_ATANH_LOG2[i]>>i)+mask^mask;
      u=x>>i+1;
      x-=(y>>i+1)+mask^mask;
      y-=u+mask^mask;
    }
    /*Repeat iteration 4.*/
    for(i--;i<13;i++){
      mask=-(y<0);
      z+=(OC_ATANH_LOG2[i]>>i)+mask^mask;
      u=x>>i+1;
      x-=(y>>i+1)+mask^mask;
      y-=u+mask^mask;
    }
    /*Repeat iteration 13.*/
    for(i--;i<32;i++){
      mask=-(y<0);
      z+=(OC_ATANH_LOG2[i]>>i)+mask^mask;
      u=x>>i+1;
      x-=(y>>i+1)+mask^mask;
      y-=u+mask^mask;
    }
    /*OC_ATANH_LOG2 has converged.*/
    for(;i<40;i++){
      mask=-(y<0);
      z+=(OC_ATANH_LOG2[31]>>i)+mask^mask;
      u=x>>i+1;
      x-=(y>>i+1)+mask^mask;
      y-=u+mask^mask;
    }
    /*Repeat iteration 40.*/
    for(i--;i<62;i++){
      mask=-(y<0);
      z+=(OC_ATANH_LOG2[31]>>i)+mask^mask;
      u=x>>i+1;
      x-=(y>>i+1)+mask^mask;
      y-=u+mask^mask;
    }
    z=z+8>>4;
  }
  return OC_Q57(ipart)+z;
}