1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
|
SUBROUTINE ZLATMR( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
$ RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER,
$ CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM,
$ PACK, A, LDA, IWORK, INFO )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIST, GRADE, PACK, PIVTNG, RSIGN, SYM
INTEGER INFO, KL, KU, LDA, M, MODE, MODEL, MODER, N
DOUBLE PRECISION ANORM, COND, CONDL, CONDR, SPARSE
COMPLEX*16 DMAX
* ..
* .. Array Arguments ..
INTEGER IPIVOT( * ), ISEED( 4 ), IWORK( * )
COMPLEX*16 A( LDA, * ), D( * ), DL( * ), DR( * )
* ..
*
* Purpose
* =======
*
* ZLATMR generates random matrices of various types for testing
* LAPACK programs.
*
* ZLATMR operates by applying the following sequence of
* operations:
*
* Generate a matrix A with random entries of distribution DIST
* which is symmetric if SYM='S', Hermitian if SYM='H', and
* nonsymmetric if SYM='N'.
*
* Set the diagonal to D, where D may be input or
* computed according to MODE, COND, DMAX and RSIGN
* as described below.
*
* Grade the matrix, if desired, from the left and/or right
* as specified by GRADE. The inputs DL, MODEL, CONDL, DR,
* MODER and CONDR also determine the grading as described
* below.
*
* Permute, if desired, the rows and/or columns as specified by
* PIVTNG and IPIVOT.
*
* Set random entries to zero, if desired, to get a random sparse
* matrix as specified by SPARSE.
*
* Make A a band matrix, if desired, by zeroing out the matrix
* outside a band of lower bandwidth KL and upper bandwidth KU.
*
* Scale A, if desired, to have maximum entry ANORM.
*
* Pack the matrix if desired. Options specified by PACK are:
* no packing
* zero out upper half (if symmetric or Hermitian)
* zero out lower half (if symmetric or Hermitian)
* store the upper half columnwise (if symmetric or Hermitian
* or square upper triangular)
* store the lower half columnwise (if symmetric or Hermitian
* or square lower triangular)
* same as upper half rowwise if symmetric
* same as conjugate upper half rowwise if Hermitian
* store the lower triangle in banded format
* (if symmetric or Hermitian)
* store the upper triangle in banded format
* (if symmetric or Hermitian)
* store the entire matrix in banded format
*
* Note: If two calls to ZLATMR differ only in the PACK parameter,
* they will generate mathematically equivalent matrices.
*
* If two calls to ZLATMR both have full bandwidth (KL = M-1
* and KU = N-1), and differ only in the PIVTNG and PACK
* parameters, then the matrices generated will differ only
* in the order of the rows and/or columns, and otherwise
* contain the same data. This consistency cannot be and
* is not maintained with less than full bandwidth.
*
* Arguments
* =========
*
* M - INTEGER
* Number of rows of A. Not modified.
*
* N - INTEGER
* Number of columns of A. Not modified.
*
* DIST - CHARACTER*1
* On entry, DIST specifies the type of distribution to be used
* to generate a random matrix .
* 'U' => real and imaginary parts are independent
* UNIFORM( 0, 1 ) ( 'U' for uniform )
* 'S' => real and imaginary parts are independent
* UNIFORM( -1, 1 ) ( 'S' for symmetric )
* 'N' => real and imaginary parts are independent
* NORMAL( 0, 1 ) ( 'N' for normal )
* 'D' => uniform on interior of unit disk ( 'D' for disk )
* Not modified.
*
* ISEED - INTEGER array, dimension (4)
* On entry ISEED specifies the seed of the random number
* generator. They should lie between 0 and 4095 inclusive,
* and ISEED(4) should be odd. The random number generator
* uses a linear congruential sequence limited to small
* integers, and so should produce machine independent
* random numbers. The values of ISEED are changed on
* exit, and can be used in the next call to ZLATMR
* to continue the same random number sequence.
* Changed on exit.
*
* SYM - CHARACTER*1
* If SYM='S', generated matrix is symmetric.
* If SYM='H', generated matrix is Hermitian.
* If SYM='N', generated matrix is nonsymmetric.
* Not modified.
*
* D - COMPLEX*16 array, dimension (min(M,N))
* On entry this array specifies the diagonal entries
* of the diagonal of A. D may either be specified
* on entry, or set according to MODE and COND as described
* below. If the matrix is Hermitian, the real part of D
* will be taken. May be changed on exit if MODE is nonzero.
*
* MODE - INTEGER
* On entry describes how D is to be used:
* MODE = 0 means use D as input
* MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
* MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
* MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
* MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
* MODE = 5 sets D to random numbers in the range
* ( 1/COND , 1 ) such that their logarithms
* are uniformly distributed.
* MODE = 6 set D to random numbers from same distribution
* as the rest of the matrix.
* MODE < 0 has the same meaning as ABS(MODE), except that
* the order of the elements of D is reversed.
* Thus if MODE is positive, D has entries ranging from
* 1 to 1/COND, if negative, from 1/COND to 1,
* Not modified.
*
* COND - DOUBLE PRECISION
* On entry, used as described under MODE above.
* If used, it must be >= 1. Not modified.
*
* DMAX - COMPLEX*16
* If MODE neither -6, 0 nor 6, the diagonal is scaled by
* DMAX / max(abs(D(i))), so that maximum absolute entry
* of diagonal is abs(DMAX). If DMAX is complex (or zero),
* diagonal will be scaled by a complex number (or zero).
*
* RSIGN - CHARACTER*1
* If MODE neither -6, 0 nor 6, specifies sign of diagonal
* as follows:
* 'T' => diagonal entries are multiplied by a random complex
* number uniformly distributed with absolute value 1
* 'F' => diagonal unchanged
* Not modified.
*
* GRADE - CHARACTER*1
* Specifies grading of matrix as follows:
* 'N' => no grading
* 'L' => matrix premultiplied by diag( DL )
* (only if matrix nonsymmetric)
* 'R' => matrix postmultiplied by diag( DR )
* (only if matrix nonsymmetric)
* 'B' => matrix premultiplied by diag( DL ) and
* postmultiplied by diag( DR )
* (only if matrix nonsymmetric)
* 'H' => matrix premultiplied by diag( DL ) and
* postmultiplied by diag( CONJG(DL) )
* (only if matrix Hermitian or nonsymmetric)
* 'S' => matrix premultiplied by diag( DL ) and
* postmultiplied by diag( DL )
* (only if matrix symmetric or nonsymmetric)
* 'E' => matrix premultiplied by diag( DL ) and
* postmultiplied by inv( diag( DL ) )
* ( 'S' for similarity )
* (only if matrix nonsymmetric)
* Note: if GRADE='S', then M must equal N.
* Not modified.
*
* DL - COMPLEX*16 array, dimension (M)
* If MODEL=0, then on entry this array specifies the diagonal
* entries of a diagonal matrix used as described under GRADE
* above. If MODEL is not zero, then DL will be set according
* to MODEL and CONDL, analogous to the way D is set according
* to MODE and COND (except there is no DMAX parameter for DL).
* If GRADE='E', then DL cannot have zero entries.
* Not referenced if GRADE = 'N' or 'R'. Changed on exit.
*
* MODEL - INTEGER
* This specifies how the diagonal array DL is to be computed,
* just as MODE specifies how D is to be computed.
* Not modified.
*
* CONDL - DOUBLE PRECISION
* When MODEL is not zero, this specifies the condition number
* of the computed DL. Not modified.
*
* DR - COMPLEX*16 array, dimension (N)
* If MODER=0, then on entry this array specifies the diagonal
* entries of a diagonal matrix used as described under GRADE
* above. If MODER is not zero, then DR will be set according
* to MODER and CONDR, analogous to the way D is set according
* to MODE and COND (except there is no DMAX parameter for DR).
* Not referenced if GRADE = 'N', 'L', 'H' or 'S'.
* Changed on exit.
*
* MODER - INTEGER
* This specifies how the diagonal array DR is to be computed,
* just as MODE specifies how D is to be computed.
* Not modified.
*
* CONDR - DOUBLE PRECISION
* When MODER is not zero, this specifies the condition number
* of the computed DR. Not modified.
*
* PIVTNG - CHARACTER*1
* On entry specifies pivoting permutations as follows:
* 'N' or ' ' => none.
* 'L' => left or row pivoting (matrix must be nonsymmetric).
* 'R' => right or column pivoting (matrix must be
* nonsymmetric).
* 'B' or 'F' => both or full pivoting, i.e., on both sides.
* In this case, M must equal N
*
* If two calls to ZLATMR both have full bandwidth (KL = M-1
* and KU = N-1), and differ only in the PIVTNG and PACK
* parameters, then the matrices generated will differ only
* in the order of the rows and/or columns, and otherwise
* contain the same data. This consistency cannot be
* maintained with less than full bandwidth.
*
* IPIVOT - INTEGER array, dimension (N or M)
* This array specifies the permutation used. After the
* basic matrix is generated, the rows, columns, or both
* are permuted. If, say, row pivoting is selected, ZLATMR
* starts with the *last* row and interchanges the M-th and
* IPIVOT(M)-th rows, then moves to the next-to-last row,
* interchanging the (M-1)-th and the IPIVOT(M-1)-th rows,
* and so on. In terms of "2-cycles", the permutation is
* (1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M))
* where the rightmost cycle is applied first. This is the
* *inverse* of the effect of pivoting in LINPACK. The idea
* is that factoring (with pivoting) an identity matrix
* which has been inverse-pivoted in this way should
* result in a pivot vector identical to IPIVOT.
* Not referenced if PIVTNG = 'N'. Not modified.
*
* SPARSE - DOUBLE PRECISION
* On entry specifies the sparsity of the matrix if a sparse
* matrix is to be generated. SPARSE should lie between
* 0 and 1. To generate a sparse matrix, for each matrix entry
* a uniform ( 0, 1 ) random number x is generated and
* compared to SPARSE; if x is larger the matrix entry
* is unchanged and if x is smaller the entry is set
* to zero. Thus on the average a fraction SPARSE of the
* entries will be set to zero.
* Not modified.
*
* KL - INTEGER
* On entry specifies the lower bandwidth of the matrix. For
* example, KL=0 implies upper triangular, KL=1 implies upper
* Hessenberg, and KL at least M-1 implies the matrix is not
* banded. Must equal KU if matrix is symmetric or Hermitian.
* Not modified.
*
* KU - INTEGER
* On entry specifies the upper bandwidth of the matrix. For
* example, KU=0 implies lower triangular, KU=1 implies lower
* Hessenberg, and KU at least N-1 implies the matrix is not
* banded. Must equal KL if matrix is symmetric or Hermitian.
* Not modified.
*
* ANORM - DOUBLE PRECISION
* On entry specifies maximum entry of output matrix
* (output matrix will by multiplied by a constant so that
* its largest absolute entry equal ANORM)
* if ANORM is nonnegative. If ANORM is negative no scaling
* is done. Not modified.
*
* PACK - CHARACTER*1
* On entry specifies packing of matrix as follows:
* 'N' => no packing
* 'U' => zero out all subdiagonal entries
* (if symmetric or Hermitian)
* 'L' => zero out all superdiagonal entries
* (if symmetric or Hermitian)
* 'C' => store the upper triangle columnwise
* (only if matrix symmetric or Hermitian or
* square upper triangular)
* 'R' => store the lower triangle columnwise
* (only if matrix symmetric or Hermitian or
* square lower triangular)
* (same as upper half rowwise if symmetric)
* (same as conjugate upper half rowwise if Hermitian)
* 'B' => store the lower triangle in band storage scheme
* (only if matrix symmetric or Hermitian)
* 'Q' => store the upper triangle in band storage scheme
* (only if matrix symmetric or Hermitian)
* 'Z' => store the entire matrix in band storage scheme
* (pivoting can be provided for by using this
* option to store A in the trailing rows of
* the allocated storage)
*
* Using these options, the various LAPACK packed and banded
* storage schemes can be obtained:
* GB - use 'Z'
* PB, HB or TB - use 'B' or 'Q'
* PP, HP or TP - use 'C' or 'R'
*
* If two calls to ZLATMR differ only in the PACK parameter,
* they will generate mathematically equivalent matrices.
* Not modified.
*
* A - COMPLEX*16 array, dimension (LDA,N)
* On exit A is the desired test matrix. Only those
* entries of A which are significant on output
* will be referenced (even if A is in packed or band
* storage format). The 'unoccupied corners' of A in
* band format will be zeroed out.
*
* LDA - INTEGER
* on entry LDA specifies the first dimension of A as
* declared in the calling program.
* If PACK='N', 'U' or 'L', LDA must be at least max ( 1, M ).
* If PACK='C' or 'R', LDA must be at least 1.
* If PACK='B', or 'Q', LDA must be MIN ( KU+1, N )
* If PACK='Z', LDA must be at least KUU+KLL+1, where
* KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, N-1 )
* Not modified.
*
* IWORK - INTEGER array, dimension (N or M)
* Workspace. Not referenced if PIVTNG = 'N'. Changed on exit.
*
* INFO - INTEGER
* Error parameter on exit:
* 0 => normal return
* -1 => M negative or unequal to N and SYM='S' or 'H'
* -2 => N negative
* -3 => DIST illegal string
* -5 => SYM illegal string
* -7 => MODE not in range -6 to 6
* -8 => COND less than 1.0, and MODE neither -6, 0 nor 6
* -10 => MODE neither -6, 0 nor 6 and RSIGN illegal string
* -11 => GRADE illegal string, or GRADE='E' and
* M not equal to N, or GRADE='L', 'R', 'B', 'S' or 'E'
* and SYM = 'H', or GRADE='L', 'R', 'B', 'H' or 'E'
* and SYM = 'S'
* -12 => GRADE = 'E' and DL contains zero
* -13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H',
* 'S' or 'E'
* -14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E',
* and MODEL neither -6, 0 nor 6
* -16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B'
* -17 => CONDR less than 1.0, GRADE='R' or 'B', and
* MODER neither -6, 0 nor 6
* -18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and
* M not equal to N, or PIVTNG='L' or 'R' and SYM='S'
* or 'H'
* -19 => IPIVOT contains out of range number and
* PIVTNG not equal to 'N'
* -20 => KL negative
* -21 => KU negative, or SYM='S' or 'H' and KU not equal to KL
* -22 => SPARSE not in range 0. to 1.
* -24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q'
* and SYM='N', or PACK='C' and SYM='N' and either KL
* not equal to 0 or N not equal to M, or PACK='R' and
* SYM='N', and either KU not equal to 0 or N not equal
* to M
* -26 => LDA too small
* 1 => Error return from ZLATM1 (computing D)
* 2 => Cannot scale diagonal to DMAX (max. entry is 0)
* 3 => Error return from ZLATM1 (computing DL)
* 4 => Error return from ZLATM1 (computing DR)
* 5 => ANORM is positive, but matrix constructed prior to
* attempting to scale it to have norm ANORM, is zero
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
COMPLEX*16 CZERO
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ) )
* ..
* .. Local Scalars ..
LOGICAL BADPVT, DZERO, FULBND
INTEGER I, IDIST, IGRADE, IISUB, IPACK, IPVTNG, IRSIGN,
$ ISUB, ISYM, J, JJSUB, JSUB, K, KLL, KUU, MNMIN,
$ MNSUB, MXSUB, NPVTS
DOUBLE PRECISION ONORM, TEMP
COMPLEX*16 CALPHA, CTEMP
* ..
* .. Local Arrays ..
DOUBLE PRECISION TEMPA( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION ZLANGB, ZLANGE, ZLANSB, ZLANSP, ZLANSY
COMPLEX*16 ZLATM2, ZLATM3
EXTERNAL LSAME, ZLANGB, ZLANGE, ZLANSB, ZLANSP, ZLANSY,
$ ZLATM2, ZLATM3
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZDSCAL, ZLATM1
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
* 1) Decode and Test the input parameters.
* Initialize flags & seed.
*
INFO = 0
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Decode DIST
*
IF( LSAME( DIST, 'U' ) ) THEN
IDIST = 1
ELSE IF( LSAME( DIST, 'S' ) ) THEN
IDIST = 2
ELSE IF( LSAME( DIST, 'N' ) ) THEN
IDIST = 3
ELSE IF( LSAME( DIST, 'D' ) ) THEN
IDIST = 4
ELSE
IDIST = -1
END IF
*
* Decode SYM
*
IF( LSAME( SYM, 'H' ) ) THEN
ISYM = 0
ELSE IF( LSAME( SYM, 'N' ) ) THEN
ISYM = 1
ELSE IF( LSAME( SYM, 'S' ) ) THEN
ISYM = 2
ELSE
ISYM = -1
END IF
*
* Decode RSIGN
*
IF( LSAME( RSIGN, 'F' ) ) THEN
IRSIGN = 0
ELSE IF( LSAME( RSIGN, 'T' ) ) THEN
IRSIGN = 1
ELSE
IRSIGN = -1
END IF
*
* Decode PIVTNG
*
IF( LSAME( PIVTNG, 'N' ) ) THEN
IPVTNG = 0
ELSE IF( LSAME( PIVTNG, ' ' ) ) THEN
IPVTNG = 0
ELSE IF( LSAME( PIVTNG, 'L' ) ) THEN
IPVTNG = 1
NPVTS = M
ELSE IF( LSAME( PIVTNG, 'R' ) ) THEN
IPVTNG = 2
NPVTS = N
ELSE IF( LSAME( PIVTNG, 'B' ) ) THEN
IPVTNG = 3
NPVTS = MIN( N, M )
ELSE IF( LSAME( PIVTNG, 'F' ) ) THEN
IPVTNG = 3
NPVTS = MIN( N, M )
ELSE
IPVTNG = -1
END IF
*
* Decode GRADE
*
IF( LSAME( GRADE, 'N' ) ) THEN
IGRADE = 0
ELSE IF( LSAME( GRADE, 'L' ) ) THEN
IGRADE = 1
ELSE IF( LSAME( GRADE, 'R' ) ) THEN
IGRADE = 2
ELSE IF( LSAME( GRADE, 'B' ) ) THEN
IGRADE = 3
ELSE IF( LSAME( GRADE, 'E' ) ) THEN
IGRADE = 4
ELSE IF( LSAME( GRADE, 'H' ) ) THEN
IGRADE = 5
ELSE IF( LSAME( GRADE, 'S' ) ) THEN
IGRADE = 6
ELSE
IGRADE = -1
END IF
*
* Decode PACK
*
IF( LSAME( PACK, 'N' ) ) THEN
IPACK = 0
ELSE IF( LSAME( PACK, 'U' ) ) THEN
IPACK = 1
ELSE IF( LSAME( PACK, 'L' ) ) THEN
IPACK = 2
ELSE IF( LSAME( PACK, 'C' ) ) THEN
IPACK = 3
ELSE IF( LSAME( PACK, 'R' ) ) THEN
IPACK = 4
ELSE IF( LSAME( PACK, 'B' ) ) THEN
IPACK = 5
ELSE IF( LSAME( PACK, 'Q' ) ) THEN
IPACK = 6
ELSE IF( LSAME( PACK, 'Z' ) ) THEN
IPACK = 7
ELSE
IPACK = -1
END IF
*
* Set certain internal parameters
*
MNMIN = MIN( M, N )
KLL = MIN( KL, M-1 )
KUU = MIN( KU, N-1 )
*
* If inv(DL) is used, check to see if DL has a zero entry.
*
DZERO = .FALSE.
IF( IGRADE.EQ.4 .AND. MODEL.EQ.0 ) THEN
DO 10 I = 1, M
IF( DL( I ).EQ.CZERO )
$ DZERO = .TRUE.
10 CONTINUE
END IF
*
* Check values in IPIVOT
*
BADPVT = .FALSE.
IF( IPVTNG.GT.0 ) THEN
DO 20 J = 1, NPVTS
IF( IPIVOT( J ).LE.0 .OR. IPIVOT( J ).GT.NPVTS )
$ BADPVT = .TRUE.
20 CONTINUE
END IF
*
* Set INFO if an error
*
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( M.NE.N .AND. ( ISYM.EQ.0 .OR. ISYM.EQ.2 ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( IDIST.EQ.-1 ) THEN
INFO = -3
ELSE IF( ISYM.EQ.-1 ) THEN
INFO = -5
ELSE IF( MODE.LT.-6 .OR. MODE.GT.6 ) THEN
INFO = -7
ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
$ COND.LT.ONE ) THEN
INFO = -8
ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
$ IRSIGN.EQ.-1 ) THEN
INFO = -10
ELSE IF( IGRADE.EQ.-1 .OR. ( IGRADE.EQ.4 .AND. M.NE.N ) .OR.
$ ( ( IGRADE.EQ.1 .OR. IGRADE.EQ.2 .OR. IGRADE.EQ.3 .OR.
$ IGRADE.EQ.4 .OR. IGRADE.EQ.6 ) .AND. ISYM.EQ.0 ) .OR.
$ ( ( IGRADE.EQ.1 .OR. IGRADE.EQ.2 .OR. IGRADE.EQ.3 .OR.
$ IGRADE.EQ.4 .OR. IGRADE.EQ.5 ) .AND. ISYM.EQ.2 ) ) THEN
INFO = -11
ELSE IF( IGRADE.EQ.4 .AND. DZERO ) THEN
INFO = -12
ELSE IF( ( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR.
$ IGRADE.EQ.5 .OR. IGRADE.EQ.6 ) .AND.
$ ( MODEL.LT.-6 .OR. MODEL.GT.6 ) ) THEN
INFO = -13
ELSE IF( ( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR.
$ IGRADE.EQ.5 .OR. IGRADE.EQ.6 ) .AND.
$ ( MODEL.NE.-6 .AND. MODEL.NE.0 .AND. MODEL.NE.6 ) .AND.
$ CONDL.LT.ONE ) THEN
INFO = -14
ELSE IF( ( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) .AND.
$ ( MODER.LT.-6 .OR. MODER.GT.6 ) ) THEN
INFO = -16
ELSE IF( ( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) .AND.
$ ( MODER.NE.-6 .AND. MODER.NE.0 .AND. MODER.NE.6 ) .AND.
$ CONDR.LT.ONE ) THEN
INFO = -17
ELSE IF( IPVTNG.EQ.-1 .OR. ( IPVTNG.EQ.3 .AND. M.NE.N ) .OR.
$ ( ( IPVTNG.EQ.1 .OR. IPVTNG.EQ.2 ) .AND. ( ISYM.EQ.0 .OR.
$ ISYM.EQ.2 ) ) ) THEN
INFO = -18
ELSE IF( IPVTNG.NE.0 .AND. BADPVT ) THEN
INFO = -19
ELSE IF( KL.LT.0 ) THEN
INFO = -20
ELSE IF( KU.LT.0 .OR. ( ( ISYM.EQ.0 .OR. ISYM.EQ.2 ) .AND. KL.NE.
$ KU ) ) THEN
INFO = -21
ELSE IF( SPARSE.LT.ZERO .OR. SPARSE.GT.ONE ) THEN
INFO = -22
ELSE IF( IPACK.EQ.-1 .OR. ( ( IPACK.EQ.1 .OR. IPACK.EQ.2 .OR.
$ IPACK.EQ.5 .OR. IPACK.EQ.6 ) .AND. ISYM.EQ.1 ) .OR.
$ ( IPACK.EQ.3 .AND. ISYM.EQ.1 .AND. ( KL.NE.0 .OR. M.NE.
$ N ) ) .OR. ( IPACK.EQ.4 .AND. ISYM.EQ.1 .AND. ( KU.NE.
$ 0 .OR. M.NE.N ) ) ) THEN
INFO = -24
ELSE IF( ( ( IPACK.EQ.0 .OR. IPACK.EQ.1 .OR. IPACK.EQ.2 ) .AND.
$ LDA.LT.MAX( 1, M ) ) .OR. ( ( IPACK.EQ.3 .OR. IPACK.EQ.
$ 4 ) .AND. LDA.LT.1 ) .OR. ( ( IPACK.EQ.5 .OR. IPACK.EQ.
$ 6 ) .AND. LDA.LT.KUU+1 ) .OR.
$ ( IPACK.EQ.7 .AND. LDA.LT.KLL+KUU+1 ) ) THEN
INFO = -26
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLATMR', -INFO )
RETURN
END IF
*
* Decide if we can pivot consistently
*
FULBND = .FALSE.
IF( KUU.EQ.N-1 .AND. KLL.EQ.M-1 )
$ FULBND = .TRUE.
*
* Initialize random number generator
*
DO 30 I = 1, 4
ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
30 CONTINUE
*
ISEED( 4 ) = 2*( ISEED( 4 ) / 2 ) + 1
*
* 2) Set up D, DL, and DR, if indicated.
*
* Compute D according to COND and MODE
*
CALL ZLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, MNMIN, INFO )
IF( INFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
IF( MODE.NE.0 .AND. MODE.NE.-6 .AND. MODE.NE.6 ) THEN
*
* Scale by DMAX
*
TEMP = ABS( D( 1 ) )
DO 40 I = 2, MNMIN
TEMP = MAX( TEMP, ABS( D( I ) ) )
40 CONTINUE
IF( TEMP.EQ.ZERO .AND. DMAX.NE.CZERO ) THEN
INFO = 2
RETURN
END IF
IF( TEMP.NE.ZERO ) THEN
CALPHA = DMAX / TEMP
ELSE
CALPHA = CONE
END IF
DO 50 I = 1, MNMIN
D( I ) = CALPHA*D( I )
50 CONTINUE
*
END IF
*
* If matrix Hermitian, make D real
*
IF( ISYM.EQ.0 ) THEN
DO 60 I = 1, MNMIN
D( I ) = DBLE( D( I ) )
60 CONTINUE
END IF
*
* Compute DL if grading set
*
IF( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR. IGRADE.EQ.
$ 5 .OR. IGRADE.EQ.6 ) THEN
CALL ZLATM1( MODEL, CONDL, 0, IDIST, ISEED, DL, M, INFO )
IF( INFO.NE.0 ) THEN
INFO = 3
RETURN
END IF
END IF
*
* Compute DR if grading set
*
IF( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) THEN
CALL ZLATM1( MODER, CONDR, 0, IDIST, ISEED, DR, N, INFO )
IF( INFO.NE.0 ) THEN
INFO = 4
RETURN
END IF
END IF
*
* 3) Generate IWORK if pivoting
*
IF( IPVTNG.GT.0 ) THEN
DO 70 I = 1, NPVTS
IWORK( I ) = I
70 CONTINUE
IF( FULBND ) THEN
DO 80 I = 1, NPVTS
K = IPIVOT( I )
J = IWORK( I )
IWORK( I ) = IWORK( K )
IWORK( K ) = J
80 CONTINUE
ELSE
DO 90 I = NPVTS, 1, -1
K = IPIVOT( I )
J = IWORK( I )
IWORK( I ) = IWORK( K )
IWORK( K ) = J
90 CONTINUE
END IF
END IF
*
* 4) Generate matrices for each kind of PACKing
* Always sweep matrix columnwise (if symmetric, upper
* half only) so that matrix generated does not depend
* on PACK
*
IF( FULBND ) THEN
*
* Use ZLATM3 so matrices generated with differing PIVOTing only
* differ only in the order of their rows and/or columns.
*
IF( IPACK.EQ.0 ) THEN
IF( ISYM.EQ.0 ) THEN
DO 110 J = 1, N
DO 100 I = 1, J
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
A( ISUB, JSUB ) = CTEMP
A( JSUB, ISUB ) = DCONJG( CTEMP )
100 CONTINUE
110 CONTINUE
ELSE IF( ISYM.EQ.1 ) THEN
DO 130 J = 1, N
DO 120 I = 1, M
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
A( ISUB, JSUB ) = CTEMP
120 CONTINUE
130 CONTINUE
ELSE IF( ISYM.EQ.2 ) THEN
DO 150 J = 1, N
DO 140 I = 1, J
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
A( ISUB, JSUB ) = CTEMP
A( JSUB, ISUB ) = CTEMP
140 CONTINUE
150 CONTINUE
END IF
*
ELSE IF( IPACK.EQ.1 ) THEN
*
DO 170 J = 1, N
DO 160 I = 1, J
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
$ SPARSE )
MNSUB = MIN( ISUB, JSUB )
MXSUB = MAX( ISUB, JSUB )
IF( MXSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
A( MNSUB, MXSUB ) = DCONJG( CTEMP )
ELSE
A( MNSUB, MXSUB ) = CTEMP
END IF
IF( MNSUB.NE.MXSUB )
$ A( MXSUB, MNSUB ) = CZERO
160 CONTINUE
170 CONTINUE
*
ELSE IF( IPACK.EQ.2 ) THEN
*
DO 190 J = 1, N
DO 180 I = 1, J
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
$ SPARSE )
MNSUB = MIN( ISUB, JSUB )
MXSUB = MAX( ISUB, JSUB )
IF( MXSUB.EQ.JSUB .AND. ISYM.EQ.0 ) THEN
A( MXSUB, MNSUB ) = DCONJG( CTEMP )
ELSE
A( MXSUB, MNSUB ) = CTEMP
END IF
IF( MNSUB.NE.MXSUB )
$ A( MNSUB, MXSUB ) = CZERO
180 CONTINUE
190 CONTINUE
*
ELSE IF( IPACK.EQ.3 ) THEN
*
DO 210 J = 1, N
DO 200 I = 1, J
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
$ SPARSE )
*
* Compute K = location of (ISUB,JSUB) entry in packed
* array
*
MNSUB = MIN( ISUB, JSUB )
MXSUB = MAX( ISUB, JSUB )
K = MXSUB*( MXSUB-1 ) / 2 + MNSUB
*
* Convert K to (IISUB,JJSUB) location
*
JJSUB = ( K-1 ) / LDA + 1
IISUB = K - LDA*( JJSUB-1 )
*
IF( MXSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
A( IISUB, JJSUB ) = DCONJG( CTEMP )
ELSE
A( IISUB, JJSUB ) = CTEMP
END IF
200 CONTINUE
210 CONTINUE
*
ELSE IF( IPACK.EQ.4 ) THEN
*
DO 230 J = 1, N
DO 220 I = 1, J
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
$ SPARSE )
*
* Compute K = location of (I,J) entry in packed array
*
MNSUB = MIN( ISUB, JSUB )
MXSUB = MAX( ISUB, JSUB )
IF( MNSUB.EQ.1 ) THEN
K = MXSUB
ELSE
K = N*( N+1 ) / 2 - ( N-MNSUB+1 )*( N-MNSUB+2 ) /
$ 2 + MXSUB - MNSUB + 1
END IF
*
* Convert K to (IISUB,JJSUB) location
*
JJSUB = ( K-1 ) / LDA + 1
IISUB = K - LDA*( JJSUB-1 )
*
IF( MXSUB.EQ.JSUB .AND. ISYM.EQ.0 ) THEN
A( IISUB, JJSUB ) = DCONJG( CTEMP )
ELSE
A( IISUB, JJSUB ) = CTEMP
END IF
220 CONTINUE
230 CONTINUE
*
ELSE IF( IPACK.EQ.5 ) THEN
*
DO 250 J = 1, N
DO 240 I = J - KUU, J
IF( I.LT.1 ) THEN
A( J-I+1, I+N ) = CZERO
ELSE
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
MNSUB = MIN( ISUB, JSUB )
MXSUB = MAX( ISUB, JSUB )
IF( MXSUB.EQ.JSUB .AND. ISYM.EQ.0 ) THEN
A( MXSUB-MNSUB+1, MNSUB ) = DCONJG( CTEMP )
ELSE
A( MXSUB-MNSUB+1, MNSUB ) = CTEMP
END IF
END IF
240 CONTINUE
250 CONTINUE
*
ELSE IF( IPACK.EQ.6 ) THEN
*
DO 270 J = 1, N
DO 260 I = J - KUU, J
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
$ SPARSE )
MNSUB = MIN( ISUB, JSUB )
MXSUB = MAX( ISUB, JSUB )
IF( MXSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
A( MNSUB-MXSUB+KUU+1, MXSUB ) = DCONJG( CTEMP )
ELSE
A( MNSUB-MXSUB+KUU+1, MXSUB ) = CTEMP
END IF
260 CONTINUE
270 CONTINUE
*
ELSE IF( IPACK.EQ.7 ) THEN
*
IF( ISYM.NE.1 ) THEN
DO 290 J = 1, N
DO 280 I = J - KUU, J
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
MNSUB = MIN( ISUB, JSUB )
MXSUB = MAX( ISUB, JSUB )
IF( I.LT.1 )
$ A( J-I+1+KUU, I+N ) = CZERO
IF( MXSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
A( MNSUB-MXSUB+KUU+1, MXSUB ) = DCONJG( CTEMP )
ELSE
A( MNSUB-MXSUB+KUU+1, MXSUB ) = CTEMP
END IF
IF( I.GE.1 .AND. MNSUB.NE.MXSUB ) THEN
IF( MNSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
A( MXSUB-MNSUB+1+KUU,
$ MNSUB ) = DCONJG( CTEMP )
ELSE
A( MXSUB-MNSUB+1+KUU, MNSUB ) = CTEMP
END IF
END IF
280 CONTINUE
290 CONTINUE
ELSE IF( ISYM.EQ.1 ) THEN
DO 310 J = 1, N
DO 300 I = J - KUU, J + KLL
CTEMP = ZLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
A( ISUB-JSUB+KUU+1, JSUB ) = CTEMP
300 CONTINUE
310 CONTINUE
END IF
*
END IF
*
ELSE
*
* Use ZLATM2
*
IF( IPACK.EQ.0 ) THEN
IF( ISYM.EQ.0 ) THEN
DO 330 J = 1, N
DO 320 I = 1, J
A( I, J ) = ZLATM2( M, N, I, J, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
A( J, I ) = DCONJG( A( I, J ) )
320 CONTINUE
330 CONTINUE
ELSE IF( ISYM.EQ.1 ) THEN
DO 350 J = 1, N
DO 340 I = 1, M
A( I, J ) = ZLATM2( M, N, I, J, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
340 CONTINUE
350 CONTINUE
ELSE IF( ISYM.EQ.2 ) THEN
DO 370 J = 1, N
DO 360 I = 1, J
A( I, J ) = ZLATM2( M, N, I, J, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
A( J, I ) = A( I, J )
360 CONTINUE
370 CONTINUE
END IF
*
ELSE IF( IPACK.EQ.1 ) THEN
*
DO 390 J = 1, N
DO 380 I = 1, J
A( I, J ) = ZLATM2( M, N, I, J, KL, KU, IDIST, ISEED,
$ D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE )
IF( I.NE.J )
$ A( J, I ) = CZERO
380 CONTINUE
390 CONTINUE
*
ELSE IF( IPACK.EQ.2 ) THEN
*
DO 410 J = 1, N
DO 400 I = 1, J
IF( ISYM.EQ.0 ) THEN
A( J, I ) = DCONJG( ZLATM2( M, N, I, J, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR,
$ IPVTNG, IWORK, SPARSE ) )
ELSE
A( J, I ) = ZLATM2( M, N, I, J, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
END IF
IF( I.NE.J )
$ A( I, J ) = CZERO
400 CONTINUE
410 CONTINUE
*
ELSE IF( IPACK.EQ.3 ) THEN
*
ISUB = 0
JSUB = 1
DO 430 J = 1, N
DO 420 I = 1, J
ISUB = ISUB + 1
IF( ISUB.GT.LDA ) THEN
ISUB = 1
JSUB = JSUB + 1
END IF
A( ISUB, JSUB ) = ZLATM2( M, N, I, J, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
420 CONTINUE
430 CONTINUE
*
ELSE IF( IPACK.EQ.4 ) THEN
*
IF( ISYM.EQ.0 .OR. ISYM.EQ.2 ) THEN
DO 450 J = 1, N
DO 440 I = 1, J
*
* Compute K = location of (I,J) entry in packed array
*
IF( I.EQ.1 ) THEN
K = J
ELSE
K = N*( N+1 ) / 2 - ( N-I+1 )*( N-I+2 ) / 2 +
$ J - I + 1
END IF
*
* Convert K to (ISUB,JSUB) location
*
JSUB = ( K-1 ) / LDA + 1
ISUB = K - LDA*( JSUB-1 )
*
A( ISUB, JSUB ) = ZLATM2( M, N, I, J, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR,
$ IPVTNG, IWORK, SPARSE )
IF( ISYM.EQ.0 )
$ A( ISUB, JSUB ) = DCONJG( A( ISUB, JSUB ) )
440 CONTINUE
450 CONTINUE
ELSE
ISUB = 0
JSUB = 1
DO 470 J = 1, N
DO 460 I = J, M
ISUB = ISUB + 1
IF( ISUB.GT.LDA ) THEN
ISUB = 1
JSUB = JSUB + 1
END IF
A( ISUB, JSUB ) = ZLATM2( M, N, I, J, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR,
$ IPVTNG, IWORK, SPARSE )
460 CONTINUE
470 CONTINUE
END IF
*
ELSE IF( IPACK.EQ.5 ) THEN
*
DO 490 J = 1, N
DO 480 I = J - KUU, J
IF( I.LT.1 ) THEN
A( J-I+1, I+N ) = CZERO
ELSE
IF( ISYM.EQ.0 ) THEN
A( J-I+1, I ) = DCONJG( ZLATM2( M, N, I, J, KL,
$ KU, IDIST, ISEED, D, IGRADE, DL,
$ DR, IPVTNG, IWORK, SPARSE ) )
ELSE
A( J-I+1, I ) = ZLATM2( M, N, I, J, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL, DR,
$ IPVTNG, IWORK, SPARSE )
END IF
END IF
480 CONTINUE
490 CONTINUE
*
ELSE IF( IPACK.EQ.6 ) THEN
*
DO 510 J = 1, N
DO 500 I = J - KUU, J
A( I-J+KUU+1, J ) = ZLATM2( M, N, I, J, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG,
$ IWORK, SPARSE )
500 CONTINUE
510 CONTINUE
*
ELSE IF( IPACK.EQ.7 ) THEN
*
IF( ISYM.NE.1 ) THEN
DO 530 J = 1, N
DO 520 I = J - KUU, J
A( I-J+KUU+1, J ) = ZLATM2( M, N, I, J, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL,
$ DR, IPVTNG, IWORK, SPARSE )
IF( I.LT.1 )
$ A( J-I+1+KUU, I+N ) = CZERO
IF( I.GE.1 .AND. I.NE.J ) THEN
IF( ISYM.EQ.0 ) THEN
A( J-I+1+KUU, I ) = DCONJG( A( I-J+KUU+1,
$ J ) )
ELSE
A( J-I+1+KUU, I ) = A( I-J+KUU+1, J )
END IF
END IF
520 CONTINUE
530 CONTINUE
ELSE IF( ISYM.EQ.1 ) THEN
DO 550 J = 1, N
DO 540 I = J - KUU, J + KLL
A( I-J+KUU+1, J ) = ZLATM2( M, N, I, J, KL, KU,
$ IDIST, ISEED, D, IGRADE, DL,
$ DR, IPVTNG, IWORK, SPARSE )
540 CONTINUE
550 CONTINUE
END IF
*
END IF
*
END IF
*
* 5) Scaling the norm
*
IF( IPACK.EQ.0 ) THEN
ONORM = ZLANGE( 'M', M, N, A, LDA, TEMPA )
ELSE IF( IPACK.EQ.1 ) THEN
ONORM = ZLANSY( 'M', 'U', N, A, LDA, TEMPA )
ELSE IF( IPACK.EQ.2 ) THEN
ONORM = ZLANSY( 'M', 'L', N, A, LDA, TEMPA )
ELSE IF( IPACK.EQ.3 ) THEN
ONORM = ZLANSP( 'M', 'U', N, A, TEMPA )
ELSE IF( IPACK.EQ.4 ) THEN
ONORM = ZLANSP( 'M', 'L', N, A, TEMPA )
ELSE IF( IPACK.EQ.5 ) THEN
ONORM = ZLANSB( 'M', 'L', N, KLL, A, LDA, TEMPA )
ELSE IF( IPACK.EQ.6 ) THEN
ONORM = ZLANSB( 'M', 'U', N, KUU, A, LDA, TEMPA )
ELSE IF( IPACK.EQ.7 ) THEN
ONORM = ZLANGB( 'M', N, KLL, KUU, A, LDA, TEMPA )
END IF
*
IF( ANORM.GE.ZERO ) THEN
*
IF( ANORM.GT.ZERO .AND. ONORM.EQ.ZERO ) THEN
*
* Desired scaling impossible
*
INFO = 5
RETURN
*
ELSE IF( ( ANORM.GT.ONE .AND. ONORM.LT.ONE ) .OR.
$ ( ANORM.LT.ONE .AND. ONORM.GT.ONE ) ) THEN
*
* Scale carefully to avoid over / underflow
*
IF( IPACK.LE.2 ) THEN
DO 560 J = 1, N
CALL ZDSCAL( M, ONE / ONORM, A( 1, J ), 1 )
CALL ZDSCAL( M, ANORM, A( 1, J ), 1 )
560 CONTINUE
*
ELSE IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
*
CALL ZDSCAL( N*( N+1 ) / 2, ONE / ONORM, A, 1 )
CALL ZDSCAL( N*( N+1 ) / 2, ANORM, A, 1 )
*
ELSE IF( IPACK.GE.5 ) THEN
*
DO 570 J = 1, N
CALL ZDSCAL( KLL+KUU+1, ONE / ONORM, A( 1, J ), 1 )
CALL ZDSCAL( KLL+KUU+1, ANORM, A( 1, J ), 1 )
570 CONTINUE
*
END IF
*
ELSE
*
* Scale straightforwardly
*
IF( IPACK.LE.2 ) THEN
DO 580 J = 1, N
CALL ZDSCAL( M, ANORM / ONORM, A( 1, J ), 1 )
580 CONTINUE
*
ELSE IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
*
CALL ZDSCAL( N*( N+1 ) / 2, ANORM / ONORM, A, 1 )
*
ELSE IF( IPACK.GE.5 ) THEN
*
DO 590 J = 1, N
CALL ZDSCAL( KLL+KUU+1, ANORM / ONORM, A( 1, J ), 1 )
590 CONTINUE
END IF
*
END IF
*
END IF
*
* End of ZLATMR
*
END
|