1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
SUBROUTINE ZLARGE( N, A, LDA, ISEED, WORK, INFO )
*
* -- LAPACK auxiliary test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
COMPLEX*16 A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* ZLARGE pre- and post-multiplies a complex general n by n matrix A
* with a random unitary matrix: A = U*D*U'.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the original n by n matrix A.
* On exit, A is overwritten by U*A*U' for some random
* unitary matrix U.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= N.
*
* ISEED (input/output) INTEGER array, dimension (4)
* On entry, the seed of the random number generator; the array
* elements must be between 0 and 4095, and ISEED(4) must be
* odd.
* On exit, the seed is updated.
*
* WORK (workspace) COMPLEX*16 array, dimension (2*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I
DOUBLE PRECISION WN
COMPLEX*16 TAU, WA, WB
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEMV, ZGERC, ZLARNV, ZSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX
* ..
* .. External Functions ..
DOUBLE PRECISION DZNRM2
EXTERNAL DZNRM2
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
END IF
IF( INFO.LT.0 ) THEN
CALL XERBLA( 'ZLARGE', -INFO )
RETURN
END IF
*
* pre- and post-multiply A by random unitary matrix
*
DO 10 I = N, 1, -1
*
* generate random reflection
*
CALL ZLARNV( 3, ISEED, N-I+1, WORK )
WN = DZNRM2( N-I+1, WORK, 1 )
WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
IF( WN.EQ.ZERO ) THEN
TAU = ZERO
ELSE
WB = WORK( 1 ) + WA
CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
WORK( 1 ) = ONE
TAU = DBLE( WB / WA )
END IF
*
* multiply A(i:n,1:n) by random reflection from the left
*
CALL ZGEMV( 'Conjugate transpose', N-I+1, N, ONE, A( I, 1 ),
$ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
CALL ZGERC( N-I+1, N, -TAU, WORK, 1, WORK( N+1 ), 1, A( I, 1 ),
$ LDA )
*
* multiply A(1:n,i:n) by random reflection from the right
*
CALL ZGEMV( 'No transpose', N, N-I+1, ONE, A( 1, I ), LDA,
$ WORK, 1, ZERO, WORK( N+1 ), 1 )
CALL ZGERC( N, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1, A( 1, I ),
$ LDA )
10 CONTINUE
RETURN
*
* End of ZLARGE
*
END
|