summaryrefslogtreecommitdiff
path: root/TESTING/MATGEN/slaran.f
blob: d032742c0cad54d0597038edac47c162be902354 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
*> \brief \b SLARAN
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       REAL FUNCTION SLARAN( ISEED )
*
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLARAN returns a random real number from a uniform (0,1)
*> distribution.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry, the seed of the random number generator; the array
*>          elements must be between 0 and 4095, and ISEED(4) must be
*>          odd.
*>          On exit, the seed is updated.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup real_matgen
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  This routine uses a multiplicative congruential method with modulus
*>  2**48 and multiplier 33952834046453 (see G.S.Fishman,
*>  'Multiplicative congruential random number generators with modulus
*>  2**b: an exhaustive analysis for b = 32 and a partial analysis for
*>  b = 48', Math. Comp. 189, pp 331-344, 1990).
*>
*>  48-bit integers are stored in 4 integer array elements with 12 bits
*>  per element. Hence the routine is portable across machines with
*>  integers of 32 bits or more.
*> \endverbatim
*>
*  =====================================================================
      REAL FUNCTION SLARAN( ISEED )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            M1, M2, M3, M4
      PARAMETER          ( M1 = 494, M2 = 322, M3 = 2508, M4 = 2549 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
      INTEGER            IPW2
      REAL               R
      PARAMETER          ( IPW2 = 4096, R = ONE / IPW2 )
*     ..
*     .. Local Scalars ..
      INTEGER            IT1, IT2, IT3, IT4
      REAL               RNDOUT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD, REAL
*     ..
*     .. Executable Statements ..
  10  CONTINUE
*
*     multiply the seed by the multiplier modulo 2**48
*
      IT4 = ISEED( 4 )*M4
      IT3 = IT4 / IPW2
      IT4 = IT4 - IPW2*IT3
      IT3 = IT3 + ISEED( 3 )*M4 + ISEED( 4 )*M3
      IT2 = IT3 / IPW2
      IT3 = IT3 - IPW2*IT2
      IT2 = IT2 + ISEED( 2 )*M4 + ISEED( 3 )*M3 + ISEED( 4 )*M2
      IT1 = IT2 / IPW2
      IT2 = IT2 - IPW2*IT1
      IT1 = IT1 + ISEED( 1 )*M4 + ISEED( 2 )*M3 + ISEED( 3 )*M2 +
     $      ISEED( 4 )*M1
      IT1 = MOD( IT1, IPW2 )
*
*     return updated seed
*
      ISEED( 1 ) = IT1
      ISEED( 2 ) = IT2
      ISEED( 3 ) = IT3
      ISEED( 4 ) = IT4
*
*     convert 48-bit integer to a real number in the interval (0,1)
*
      RNDOUT = R*( REAL( IT1 )+R*( REAL( IT2 )+R*( REAL( IT3 )+R*
     $         ( REAL( IT4 ) ) ) ) )
*
      IF (RNDOUT.EQ.1.0) THEN
*        If a real number has n bits of precision, and the first
*        n bits of the 48-bit integer above happen to be all 1 (which
*        will occur about once every 2**n calls), then SLARAN will
*        be rounded to exactly 1.0. In IEEE single precision arithmetic,
*        this will happen relatively often since n = 24.
*        Since SLARAN is not supposed to return exactly 0.0 or 1.0
*        (and some callers of SLARAN, such as CLARND, depend on that),
*        the statistically correct thing to do in this situation is
*        simply to iterate again.
*        N.B. the case SLARAN = 0.0 should not be possible.
*
         GOTO 10
      END IF
*
      SLARAN = RNDOUT
      RETURN
*
*     End of SLARAN
*
      END