1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
SUBROUTINE DLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
$ BETA, WX, WY, S, DIF )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER LDA, LDX, LDY, N, TYPE
DOUBLE PRECISION ALPHA, BETA, WX, WY
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDA, * ), DIF( * ), S( * ),
$ X( LDX, * ), Y( LDY, * )
* ..
*
* Purpose
* =======
*
* DLATM6 generates test matrices for the generalized eigenvalue
* problem, their corresponding right and left eigenvector matrices,
* and also reciprocal condition numbers for all eigenvalues and
* the reciprocal condition numbers of eigenvectors corresponding to
* the 1th and 5th eigenvalues.
*
* Test Matrices
* =============
*
* Two kinds of test matrix pairs
*
* (A, B) = inverse(YH) * (Da, Db) * inverse(X)
*
* are used in the tests:
*
* Type 1:
* Da = 1+a 0 0 0 0 Db = 1 0 0 0 0
* 0 2+a 0 0 0 0 1 0 0 0
* 0 0 3+a 0 0 0 0 1 0 0
* 0 0 0 4+a 0 0 0 0 1 0
* 0 0 0 0 5+a , 0 0 0 0 1 , and
*
* Type 2:
* Da = 1 -1 0 0 0 Db = 1 0 0 0 0
* 1 1 0 0 0 0 1 0 0 0
* 0 0 1 0 0 0 0 1 0 0
* 0 0 0 1+a 1+b 0 0 0 1 0
* 0 0 0 -1-b 1+a , 0 0 0 0 1 .
*
* In both cases the same inverse(YH) and inverse(X) are used to compute
* (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
*
* YH: = 1 0 -y y -y X = 1 0 -x -x x
* 0 1 -y y -y 0 1 x -x -x
* 0 0 1 0 0 0 0 1 0 0
* 0 0 0 1 0 0 0 0 1 0
* 0 0 0 0 1, 0 0 0 0 1 ,
*
* where a, b, x and y will have all values independently of each other.
*
* Arguments
* =========
*
* TYPE (input) INTEGER
* Specifies the problem type (see futher details).
*
* N (input) INTEGER
* Size of the matrices A and B.
*
* A (output) DOUBLE PRECISION array, dimension (LDA, N).
* On exit A N-by-N is initialized according to TYPE.
*
* LDA (input) INTEGER
* The leading dimension of A and of B.
*
* B (output) DOUBLE PRECISION array, dimension (LDA, N).
* On exit B N-by-N is initialized according to TYPE.
*
* X (output) DOUBLE PRECISION array, dimension (LDX, N).
* On exit X is the N-by-N matrix of right eigenvectors.
*
* LDX (input) INTEGER
* The leading dimension of X.
*
* Y (output) DOUBLE PRECISION array, dimension (LDY, N).
* On exit Y is the N-by-N matrix of left eigenvectors.
*
* LDY (input) INTEGER
* The leading dimension of Y.
*
* ALPHA (input) DOUBLE PRECISION
* BETA (input) DOUBLE PRECISION
* Weighting constants for matrix A.
*
* WX (input) DOUBLE PRECISION
* Constant for right eigenvector matrix.
*
* WY (input) DOUBLE PRECISION
* Constant for left eigenvector matrix.
*
* S (output) DOUBLE PRECISION array, dimension (N)
* S(i) is the reciprocal condition number for eigenvalue i.
*
* DIF (output) DOUBLE PRECISION array, dimension (N)
* DIF(i) is the reciprocal condition number for eigenvector i.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ THREE = 3.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
* ..
* .. Local Arrays ..
DOUBLE PRECISION WORK( 100 ), Z( 12, 12 )
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, SQRT
* ..
* .. External Subroutines ..
EXTERNAL DGESVD, DLACPY, DLAKF2
* ..
* .. Executable Statements ..
*
* Generate test problem ...
* (Da, Db) ...
*
DO 20 I = 1, N
DO 10 J = 1, N
*
IF( I.EQ.J ) THEN
A( I, I ) = DBLE( I ) + ALPHA
B( I, I ) = ONE
ELSE
A( I, J ) = ZERO
B( I, J ) = ZERO
END IF
*
10 CONTINUE
20 CONTINUE
*
* Form X and Y
*
CALL DLACPY( 'F', N, N, B, LDA, Y, LDY )
Y( 3, 1 ) = -WY
Y( 4, 1 ) = WY
Y( 5, 1 ) = -WY
Y( 3, 2 ) = -WY
Y( 4, 2 ) = WY
Y( 5, 2 ) = -WY
*
CALL DLACPY( 'F', N, N, B, LDA, X, LDX )
X( 1, 3 ) = -WX
X( 1, 4 ) = -WX
X( 1, 5 ) = WX
X( 2, 3 ) = WX
X( 2, 4 ) = -WX
X( 2, 5 ) = -WX
*
* Form (A, B)
*
B( 1, 3 ) = WX + WY
B( 2, 3 ) = -WX + WY
B( 1, 4 ) = WX - WY
B( 2, 4 ) = WX - WY
B( 1, 5 ) = -WX + WY
B( 2, 5 ) = WX + WY
IF( TYPE.EQ.1 ) THEN
A( 1, 3 ) = WX*A( 1, 1 ) + WY*A( 3, 3 )
A( 2, 3 ) = -WX*A( 2, 2 ) + WY*A( 3, 3 )
A( 1, 4 ) = WX*A( 1, 1 ) - WY*A( 4, 4 )
A( 2, 4 ) = WX*A( 2, 2 ) - WY*A( 4, 4 )
A( 1, 5 ) = -WX*A( 1, 1 ) + WY*A( 5, 5 )
A( 2, 5 ) = WX*A( 2, 2 ) + WY*A( 5, 5 )
ELSE IF( TYPE.EQ.2 ) THEN
A( 1, 3 ) = TWO*WX + WY
A( 2, 3 ) = WY
A( 1, 4 ) = -WY*( TWO+ALPHA+BETA )
A( 2, 4 ) = TWO*WX - WY*( TWO+ALPHA+BETA )
A( 1, 5 ) = -TWO*WX + WY*( ALPHA-BETA )
A( 2, 5 ) = WY*( ALPHA-BETA )
A( 1, 1 ) = ONE
A( 1, 2 ) = -ONE
A( 2, 1 ) = ONE
A( 2, 2 ) = A( 1, 1 )
A( 3, 3 ) = ONE
A( 4, 4 ) = ONE + ALPHA
A( 4, 5 ) = ONE + BETA
A( 5, 4 ) = -A( 4, 5 )
A( 5, 5 ) = A( 4, 4 )
END IF
*
* Compute condition numbers
*
IF( TYPE.EQ.1 ) THEN
*
S( 1 ) = ONE / SQRT( ( ONE+THREE*WY*WY ) /
$ ( ONE+A( 1, 1 )*A( 1, 1 ) ) )
S( 2 ) = ONE / SQRT( ( ONE+THREE*WY*WY ) /
$ ( ONE+A( 2, 2 )*A( 2, 2 ) ) )
S( 3 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) /
$ ( ONE+A( 3, 3 )*A( 3, 3 ) ) )
S( 4 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) /
$ ( ONE+A( 4, 4 )*A( 4, 4 ) ) )
S( 5 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) /
$ ( ONE+A( 5, 5 )*A( 5, 5 ) ) )
*
CALL DLAKF2( 1, 4, A, LDA, A( 2, 2 ), B, B( 2, 2 ), Z, 12 )
CALL DGESVD( 'N', 'N', 8, 8, Z, 12, WORK, WORK( 9 ), 1,
$ WORK( 10 ), 1, WORK( 11 ), 40, INFO )
DIF( 1 ) = WORK( 8 )
*
CALL DLAKF2( 4, 1, A, LDA, A( 5, 5 ), B, B( 5, 5 ), Z, 12 )
CALL DGESVD( 'N', 'N', 8, 8, Z, 12, WORK, WORK( 9 ), 1,
$ WORK( 10 ), 1, WORK( 11 ), 40, INFO )
DIF( 5 ) = WORK( 8 )
*
ELSE IF( TYPE.EQ.2 ) THEN
*
S( 1 ) = ONE / SQRT( ONE / THREE+WY*WY )
S( 2 ) = S( 1 )
S( 3 ) = ONE / SQRT( ONE / TWO+WX*WX )
S( 4 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) /
$ ( ONE+( ONE+ALPHA )*( ONE+ALPHA )+( ONE+BETA )*( ONE+
$ BETA ) ) )
S( 5 ) = S( 4 )
*
CALL DLAKF2( 2, 3, A, LDA, A( 3, 3 ), B, B( 3, 3 ), Z, 12 )
CALL DGESVD( 'N', 'N', 12, 12, Z, 12, WORK, WORK( 13 ), 1,
$ WORK( 14 ), 1, WORK( 15 ), 60, INFO )
DIF( 1 ) = WORK( 12 )
*
CALL DLAKF2( 3, 2, A, LDA, A( 4, 4 ), B, B( 4, 4 ), Z, 12 )
CALL DGESVD( 'N', 'N', 12, 12, Z, 12, WORK, WORK( 13 ), 1,
$ WORK( 14 ), 1, WORK( 15 ), 60, INFO )
DIF( 5 ) = WORK( 12 )
*
END IF
*
RETURN
*
* End of DLATM6
*
END
|