summaryrefslogtreecommitdiff
path: root/TESTING/MATGEN/clagge.f
blob: a11b636291b3758dc226ea9047ae16b5f499ac95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
*> \brief \b CLAGGE
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, KL, KU, LDA, M, N
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       REAL               D( * )
*       COMPLEX            A( LDA, * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLAGGE generates a complex general m by n matrix A, by pre- and post-
*> multiplying a real diagonal matrix D with random unitary matrices:
*> A = U*D*V. The lower and upper bandwidths may then be reduced to
*> kl and ku by additional unitary transformations.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The number of nonzero subdiagonals within the band of A.
*>          0 <= KL <= M-1.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The number of nonzero superdiagonals within the band of A.
*>          0 <= KU <= N-1.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is REAL array, dimension (min(M,N))
*>          The diagonal elements of the diagonal matrix D.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The generated m by n matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= M.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry, the seed of the random number generator; the array
*>          elements must be between 0 and 4095, and ISEED(4) must be
*>          odd.
*>          On exit, the seed is updated.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (M+N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2015
*
*> \ingroup complex_matgen
*
*  =====================================================================
      SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.6.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2015
*
*     .. Scalar Arguments ..
      INTEGER            INFO, KL, KU, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      REAL               D( * )
      COMPLEX            A( LDA, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
     $                   ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               WN
      COMPLEX            TAU, WA, WB
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV, CGERC, CLACGV, CLARNV, CSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, REAL
*     ..
*     .. External Functions ..
      REAL               SCNRM2
      EXTERNAL           SCNRM2
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
         INFO = -3
      ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -7
      END IF
      IF( INFO.LT.0 ) THEN
         CALL XERBLA( 'CLAGGE', -INFO )
         RETURN
      END IF
*
*     initialize A to diagonal matrix
*
      DO 20 J = 1, N
         DO 10 I = 1, M
            A( I, J ) = ZERO
   10    CONTINUE
   20 CONTINUE
      DO 30 I = 1, MIN( M, N )
         A( I, I ) = D( I )
   30 CONTINUE
*
*     Quick exit if the user wants a diagonal matrix
*
      IF(( KL .EQ. 0 ).AND.( KU .EQ. 0)) RETURN
*
*     pre- and post-multiply A by random unitary matrices
*
      DO 40 I = MIN( M, N ), 1, -1
         IF( I.LT.M ) THEN
*
*           generate random reflection
*
            CALL CLARNV( 3, ISEED, M-I+1, WORK )
            WN = SCNRM2( M-I+1, WORK, 1 )
            WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
            IF( WN.EQ.ZERO ) THEN
               TAU = ZERO
            ELSE
               WB = WORK( 1 ) + WA
               CALL CSCAL( M-I, ONE / WB, WORK( 2 ), 1 )
               WORK( 1 ) = ONE
               TAU = REAL( WB / WA )
            END IF
*
*           multiply A(i:m,i:n) by random reflection from the left
*
            CALL CGEMV( 'Conjugate transpose', M-I+1, N-I+1, ONE,
     $                  A( I, I ), LDA, WORK, 1, ZERO, WORK( M+1 ), 1 )
            CALL CGERC( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1,
     $                  A( I, I ), LDA )
         END IF
         IF( I.LT.N ) THEN
*
*           generate random reflection
*
            CALL CLARNV( 3, ISEED, N-I+1, WORK )
            WN = SCNRM2( N-I+1, WORK, 1 )
            WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
            IF( WN.EQ.ZERO ) THEN
               TAU = ZERO
            ELSE
               WB = WORK( 1 ) + WA
               CALL CSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
               WORK( 1 ) = ONE
               TAU = REAL( WB / WA )
            END IF
*
*           multiply A(i:m,i:n) by random reflection from the right
*
            CALL CGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ),
     $                  LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
            CALL CGERC( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1,
     $                  A( I, I ), LDA )
         END IF
   40 CONTINUE
*
*     Reduce number of subdiagonals to KL and number of superdiagonals
*     to KU
*
      DO 70 I = 1, MAX( M-1-KL, N-1-KU )
         IF( KL.LE.KU ) THEN
*
*           annihilate subdiagonal elements first (necessary if KL = 0)
*
            IF( I.LE.MIN( M-1-KL, N ) ) THEN
*
*              generate reflection to annihilate A(kl+i+1:m,i)
*
               WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
               WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
               IF( WN.EQ.ZERO ) THEN
                  TAU = ZERO
               ELSE
                  WB = A( KL+I, I ) + WA
                  CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
                  A( KL+I, I ) = ONE
                  TAU = REAL( WB / WA )
               END IF
*
*              apply reflection to A(kl+i:m,i+1:n) from the left
*
               CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
     $                     A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
     $                     WORK, 1 )
               CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
     $                     1, A( KL+I, I+1 ), LDA )
               A( KL+I, I ) = -WA
            END IF
*
            IF( I.LE.MIN( N-1-KU, M ) ) THEN
*
*              generate reflection to annihilate A(i,ku+i+1:n)
*
               WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
               WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
               IF( WN.EQ.ZERO ) THEN
                  TAU = ZERO
               ELSE
                  WB = A( I, KU+I ) + WA
                  CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
                  A( I, KU+I ) = ONE
                  TAU = REAL( WB / WA )
               END IF
*
*              apply reflection to A(i+1:m,ku+i:n) from the right
*
               CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
               CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
     $                     A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
     $                     WORK, 1 )
               CALL CGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
     $                     LDA, A( I+1, KU+I ), LDA )
               A( I, KU+I ) = -WA
            END IF
         ELSE
*
*           annihilate superdiagonal elements first (necessary if
*           KU = 0)
*
            IF( I.LE.MIN( N-1-KU, M ) ) THEN
*
*              generate reflection to annihilate A(i,ku+i+1:n)
*
               WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
               WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
               IF( WN.EQ.ZERO ) THEN
                  TAU = ZERO
               ELSE
                  WB = A( I, KU+I ) + WA
                  CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
                  A( I, KU+I ) = ONE
                  TAU = REAL( WB / WA )
               END IF
*
*              apply reflection to A(i+1:m,ku+i:n) from the right
*
               CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
               CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
     $                     A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
     $                     WORK, 1 )
               CALL CGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
     $                     LDA, A( I+1, KU+I ), LDA )
               A( I, KU+I ) = -WA
            END IF
*
            IF( I.LE.MIN( M-1-KL, N ) ) THEN
*
*              generate reflection to annihilate A(kl+i+1:m,i)
*
               WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
               WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
               IF( WN.EQ.ZERO ) THEN
                  TAU = ZERO
               ELSE
                  WB = A( KL+I, I ) + WA
                  CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
                  A( KL+I, I ) = ONE
                  TAU = REAL( WB / WA )
               END IF
*
*              apply reflection to A(kl+i:m,i+1:n) from the left
*
               CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
     $                     A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
     $                     WORK, 1 )
               CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
     $                     1, A( KL+I, I+1 ), LDA )
               A( KL+I, I ) = -WA
            END IF
         END IF
*
         IF (I .LE. N) THEN
            DO 50 J = KL + I + 1, M
               A( J, I ) = ZERO
   50       CONTINUE
         END IF
*
         IF (I .LE. M) THEN
            DO 60 J = KU + I + 1, N
               A( I, J ) = ZERO
   60       CONTINUE
         END IF
   70 CONTINUE
      RETURN
*
*     End of CLAGGE
*
      END