1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
*> \brief \b ZTSQR01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZTSQR01(TSSW, M,N, MB, NB, RESULT)
*
* .. Scalar Arguments ..
* INTEGER M, N, MB
* .. Return values ..
* DOUBLE PRECISION RESULT(6)
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZTSQR01 tests ZGEQR , ZGELQ, ZGEMLQ and ZGEMQR.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TSSW
*> \verbatim
*> TSSW is CHARACTER
*> 'TS' for testing tall skinny QR
*> and anything else for testing short wide LQ
*> \endverbatim
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> Number of rows in test matrix.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> Number of columns in test matrix.
*> \endverbatim
*> \param[in] MB
*> \verbatim
*> MB is INTEGER
*> Number of row in row block in test matrix.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> Number of columns in column block test matrix.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (6)
*> Results of each of the six tests below.
*>
*> RESULT(1) = | A - Q R | or | A - L Q |
*> RESULT(2) = | I - Q^H Q | or | I - Q Q^H |
*> RESULT(3) = | Q C - Q C |
*> RESULT(4) = | Q^H C - Q^H C |
*> RESULT(5) = | C Q - C Q |
*> RESULT(6) = | C Q^H - C Q^H |
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
* =====================================================================
SUBROUTINE ZTSQR01(TSSW, M, N, MB, NB, RESULT)
IMPLICIT NONE
*
* -- LAPACK test routine (version 3.4.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* .. Scalar Arguments ..
CHARACTER TSSW
INTEGER M, N, MB, NB
* .. Return values ..
DOUBLE PRECISION RESULT(6)
*
* =====================================================================
*
* ..
* .. Local allocatable arrays
COMPLEX*16, ALLOCATABLE :: AF(:,:), Q(:,:),
$ R(:,:), RWORK(:), WORK( : ), T(:),
$ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:), LQ(:,:)
*
* .. Parameters ..
DOUBLE PRECISION ZERO
COMPLEX*16 ONE, CZERO
PARAMETER( ZERO = 0.0, ONE = (1.0,0.0), CZERO=(0.0,0.0) )
* ..
* .. Local Scalars ..
LOGICAL TESTZEROS, TS
INTEGER INFO, J, K, L, LWORK, LT ,MNB
DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL DLAMCH, ZLANGE, ZLANSY, LSAME, ILAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Scalars in Common ..
CHARACTER*32 srnamt
* ..
* .. Common blocks ..
COMMON / srnamc / srnamt
* ..
* .. Data statements ..
DATA ISEED / 1988, 1989, 1990, 1991 /
*
* TEST TALL SKINNY OR SHORT WIDE
*
TS = LSAME(TSSW, 'TS')
*
* TEST MATRICES WITH HALF OF MATRIX BEING ZEROS
*
TESTZEROS = .FALSE.
*
EPS = DLAMCH( 'Epsilon' )
K = MIN(M,N)
L = MAX(M,N,1)
MNB = MAX ( MB, NB)
LWORK = MAX(3,L)*MNB
IF((K.GE.MNB).OR.(MNB.GE.L))THEN
LT=MAX(1,L)*MNB+5
ELSE
LT=MAX(1,(L-K)/(MNB-K)+1)*L*MNB+5
END IF
*
* Dynamically allocate local arrays
*
ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L),
$ WORK(LWORK), T(LT), C(M,N), CF(M,N),
$ D(N,M), DF(N,M), LQ(L,N) )
*
* Put random numbers into A and copy to AF
*
DO J=1,N
CALL ZLARNV( 2, ISEED, M, A( 1, J ) )
END DO
IF (TESTZEROS) THEN
IF (M.GE.4) THEN
DO J=1,N
CALL ZLARNV( 2, ISEED, M/2, A( M/4, J ) )
END DO
END IF
END IF
CALL ZLACPY( 'Full', M, N, A, M, AF, M )
*
IF (TS) THEN
*
* Factor the matrix A in the array AF.
*
srnamt = 'ZGEQR'
CALL ZGEQR( M, N, AF, M, T, LT, WORK, LWORK, INFO )
*
* Generate the m-by-m matrix Q
*
CALL ZLASET( 'Full', M, M, CZERO, ONE, Q, M )
srnamt = 'ZGEMQR'
CALL ZGEMQR( 'L', 'N', M, M, K, AF, M, T, LT, Q, M,
$ WORK, LWORK, INFO )
*
* Copy R
*
CALL ZLASET( 'Full', M, N, CZERO, CZERO, R, M )
CALL ZLACPY( 'Upper', M, N, AF, M, R, M )
*
* Compute |R - Q'*A| / |A| and store in RESULT(1)
*
CALL ZGEMM( 'C', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M )
ANORM = ZLANGE( '1', M, N, A, M, RWORK )
RESID = ZLANGE( '1', M, N, R, M, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = RESID / (EPS*MAX(1,M)*ANORM)
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute |I - Q'*Q| and store in RESULT(2)
*
CALL ZLASET( 'Full', M, M, CZERO, ONE, R, M )
CALL ZHERK( 'U', 'C', M, M, DREAL(-ONE), Q, M, DREAL(ONE), R, M )
RESID = ZLANSY( '1', 'Upper', M, R, M, RWORK )
RESULT( 2 ) = RESID / (EPS*MAX(1,M))
*
* Generate random m-by-n matrix C and a copy CF
*
DO J=1,N
CALL ZLARNV( 2, ISEED, M, C( 1, J ) )
END DO
CNORM = ZLANGE( '1', M, N, C, M, RWORK)
CALL ZLACPY( 'Full', M, N, C, M, CF, M )
*
* Apply Q to C as Q*C
*
srnamt = 'ZGEMQR'
CALL ZGEMQR( 'L', 'N', M, N, K, AF, M, T, LT, CF, M,
$ WORK, LWORK, INFO)
*
* Compute |Q*C - Q*C| / |C|
*
CALL ZGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
RESID = ZLANGE( '1', M, N, CF, M, RWORK )
IF( CNORM.GT.ZERO ) THEN
RESULT( 3 ) = RESID / (EPS*MAX(1,M)*CNORM)
ELSE
RESULT( 3 ) = ZERO
END IF
*
* Copy C into CF again
*
CALL ZLACPY( 'Full', M, N, C, M, CF, M )
*
* Apply Q to C as QT*C
*
srnamt = 'ZGEMQR'
CALL ZGEMQR( 'L', 'C', M, N, K, AF, M, T, LT, CF, M,
$ WORK, LWORK, INFO)
*
* Compute |QT*C - QT*C| / |C|
*
CALL ZGEMM( 'C', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
RESID = ZLANGE( '1', M, N, CF, M, RWORK )
IF( CNORM.GT.ZERO ) THEN
RESULT( 4 ) = RESID / (EPS*MAX(1,M)*CNORM)
ELSE
RESULT( 4 ) = ZERO
END IF
*
* Generate random n-by-m matrix D and a copy DF
*
DO J=1,M
CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
END DO
DNORM = ZLANGE( '1', N, M, D, N, RWORK)
CALL ZLACPY( 'Full', N, M, D, N, DF, N )
*
* Apply Q to D as D*Q
*
srnamt = 'ZGEMQR'
CALL ZGEMQR( 'R', 'N', N, M, K, AF, M, T, LT, DF, N,
$ WORK, LWORK, INFO)
*
* Compute |D*Q - D*Q| / |D|
*
CALL ZGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
RESID = ZLANGE( '1', N, M, DF, N, RWORK )
IF( DNORM.GT.ZERO ) THEN
RESULT( 5 ) = RESID / (EPS*MAX(1,M)*DNORM)
ELSE
RESULT( 5 ) = ZERO
END IF
*
* Copy D into DF again
*
CALL ZLACPY( 'Full', N, M, D, N, DF, N )
*
* Apply Q to D as D*QT
*
CALL ZGEMQR( 'R', 'C', N, M, K, AF, M, T, LT, DF, N,
$ WORK, LWORK, INFO)
*
* Compute |D*QT - D*QT| / |D|
*
CALL ZGEMM( 'N', 'C', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
RESID = ZLANGE( '1', N, M, DF, N, RWORK )
IF( CNORM.GT.ZERO ) THEN
RESULT( 6 ) = RESID / (EPS*MAX(1,M)*DNORM)
ELSE
RESULT( 6 ) = ZERO
END IF
*
* Short and wide
*
ELSE
srnamt = 'ZGELQ'
CALL ZGELQ( M, N, AF, M, T, LT, WORK, LWORK, INFO )
*
*
* Generate the n-by-n matrix Q
*
CALL ZLASET( 'Full', N, N, CZERO, ONE, Q, N )
srnamt = 'ZGEMLQ'
CALL ZGEMLQ( 'R', 'N', N, N, K, AF, M, T, LT, Q, N,
$ WORK, LWORK, INFO )
*
* Copy R
*
CALL ZLASET( 'Full', M, N, CZERO, CZERO, LQ, L )
CALL ZLACPY( 'Lower', M, N, AF, M, LQ, L )
*
* Compute |L - A*Q'| / |A| and store in RESULT(1)
*
CALL ZGEMM( 'N', 'C', M, N, N, -ONE, A, M, Q, N, ONE, LQ, L )
ANORM = ZLANGE( '1', M, N, A, M, RWORK )
RESID = ZLANGE( '1', M, N, LQ, L, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = RESID / (EPS*MAX(1,N)*ANORM)
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute |I - Q'*Q| and store in RESULT(2)
*
CALL ZLASET( 'Full', N, N, CZERO, ONE, LQ, L )
CALL ZHERK( 'U', 'C', N, N, DREAL(-ONE), Q, N, DREAL(ONE), LQ, L)
RESID = ZLANSY( '1', 'Upper', N, LQ, L, RWORK )
RESULT( 2 ) = RESID / (EPS*MAX(1,N))
*
* Generate random m-by-n matrix C and a copy CF
*
DO J=1,M
CALL ZLARNV( 2, ISEED, N, D( 1, J ) )
END DO
DNORM = ZLANGE( '1', N, M, D, N, RWORK)
CALL ZLACPY( 'Full', N, M, D, N, DF, N )
*
* Apply Q to C as Q*C
*
CALL ZGEMLQ( 'L', 'N', N, M, K, AF, M, T, LT, DF, N,
$ WORK, LWORK, INFO)
*
* Compute |Q*D - Q*D| / |D|
*
CALL ZGEMM( 'N', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
RESID = ZLANGE( '1', N, M, DF, N, RWORK )
IF( DNORM.GT.ZERO ) THEN
RESULT( 3 ) = RESID / (EPS*MAX(1,N)*DNORM)
ELSE
RESULT( 3 ) = ZERO
END IF
*
* Copy D into DF again
*
CALL ZLACPY( 'Full', N, M, D, N, DF, N )
*
* Apply Q to D as QT*D
*
CALL ZGEMLQ( 'L', 'C', N, M, K, AF, M, T, LT, DF, N,
$ WORK, LWORK, INFO)
*
* Compute |QT*D - QT*D| / |D|
*
CALL ZGEMM( 'C', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
RESID = ZLANGE( '1', N, M, DF, N, RWORK )
IF( DNORM.GT.ZERO ) THEN
RESULT( 4 ) = RESID / (EPS*MAX(1,N)*DNORM)
ELSE
RESULT( 4 ) = ZERO
END IF
*
* Generate random n-by-m matrix D and a copy DF
*
DO J=1,N
CALL ZLARNV( 2, ISEED, M, C( 1, J ) )
END DO
CNORM = ZLANGE( '1', M, N, C, M, RWORK)
CALL ZLACPY( 'Full', M, N, C, M, CF, M )
*
* Apply Q to C as C*Q
*
CALL ZGEMLQ( 'R', 'N', M, N, K, AF, M, T, LT, CF, M,
$ WORK, LWORK, INFO)
*
* Compute |C*Q - C*Q| / |C|
*
CALL ZGEMM( 'N', 'N', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
RESID = ZLANGE( '1', N, M, DF, N, RWORK )
IF( CNORM.GT.ZERO ) THEN
RESULT( 5 ) = RESID / (EPS*MAX(1,N)*CNORM)
ELSE
RESULT( 5 ) = ZERO
END IF
*
* Copy C into CF again
*
CALL ZLACPY( 'Full', M, N, C, M, CF, M )
*
* Apply Q to D as D*QT
*
CALL ZGEMLQ( 'R', 'C', M, N, K, AF, M, T, LT, CF, M,
$ WORK, LWORK, INFO)
*
* Compute |C*QT - C*QT| / |C|
*
CALL ZGEMM( 'N', 'C', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
RESID = ZLANGE( '1', M, N, CF, M, RWORK )
IF( CNORM.GT.ZERO ) THEN
RESULT( 6 ) = RESID / (EPS*MAX(1,N)*CNORM)
ELSE
RESULT( 6 ) = ZERO
END IF
*
END IF
*
* Deallocate all arrays
*
DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T, C, D, CF, DF)
*
RETURN
END
|