summaryrefslogtreecommitdiff
path: root/TESTING/LIN/zqrt16.f
blob: 0ffbe436bc43bc7ffb9a73634100399c6ff7b565 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
*> \brief \b ZQRT16
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZQRT16( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
*                          RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          TRANS
*       INTEGER            LDA, LDB, LDX, M, N, NRHS
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZQRT16 computes the residual for a solution of a system of linear
*> equations  A*x = b  or  A'*x = b:
*>    RESID = norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations:
*>          = 'N':  A *x = b
*>          = 'T':  A^T*x = b, where A^T is the transpose of A
*>          = 'C':  A^H*x = b, where A^H is the conjugate transpose of A
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of columns of B, the matrix of right hand sides.
*>          NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The original M x N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
*>          The computed solution vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  If TRANS = 'N',
*>          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          On entry, the right hand side vectors for the system of
*>          linear equations.
*>          On exit, B is overwritten with the difference B - A*X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  IF TRANS = 'N',
*>          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          The maximum over the number of right hand sides of
*>          norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZQRT16( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
     $                   RWORK, RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            LDA, LDB, LDX, M, N, NRHS
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CONE
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            J, N1, N2
      DOUBLE PRECISION   ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DZASUM, ZLANGE
      EXTERNAL           LSAME, DLAMCH, DZASUM, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if M = 0 or N = 0 or NRHS = 0
*
      IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
      IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
         ANORM = ZLANGE( 'I', M, N, A, LDA, RWORK )
         N1 = N
         N2 = M
      ELSE
         ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
         N1 = M
         N2 = N
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Compute  B - A*X  (or  B - A'*X ) and store in B.
*
      CALL ZGEMM( TRANS, 'No transpose', N1, NRHS, N2, -CONE, A, LDA, X,
     $            LDX, CONE, B, LDB )
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ) .
*
      RESID = ZERO
      DO 10 J = 1, NRHS
         BNORM = DZASUM( N1, B( 1, J ), 1 )
         XNORM = DZASUM( N2, X( 1, J ), 1 )
         IF( ANORM.EQ.ZERO .AND. BNORM.EQ.ZERO ) THEN
            RESID = ZERO
         ELSE IF( ANORM.LE.ZERO .OR. XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) /
     $              ( MAX( M, N )*EPS ) )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of ZQRT16
*
      END