summaryrefslogtreecommitdiff
path: root/TESTING/LIN/zpbt01.f
blob: 841cc7fe26f59cda8ba95990f3c3e6dffbf2fca3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
*> \brief \b ZPBT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
*                          RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            KD, LDA, LDAFAC, N
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZPBT01 reconstructs a Hermitian positive definite band matrix A from
*> its L*L' or U'*U factorization and computes the residual
*>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon, L' is the conjugate transpose of
*> L, and U' is the conjugate transpose of U.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of super-diagonals of the matrix A if UPLO = 'U',
*>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The original Hermitian band matrix A.  If UPLO = 'U', the
*>          upper triangular part of A is stored as a band matrix; if
*>          UPLO = 'L', the lower triangular part of A is stored.  The
*>          columns of the appropriate triangle are stored in the columns
*>          of A and the diagonals of the triangle are stored in the rows
*>          of A.  See ZPBTRF for further details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER.
*>          The leading dimension of the array A.  LDA >= max(1,KD+1).
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
*>          The factored form of the matrix A.  AFAC contains the factor
*>          L or U from the L*L' or U'*U factorization in band storage
*>          format, as computed by ZPBTRF.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*>          LDAFAC is INTEGER
*>          The leading dimension of the array AFAC.
*>          LDAFAC >= max(1,KD+1).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            KD, LDA, LDAFAC, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
*     ..
*
*  =====================================================================
*
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K, KC, KLEN, ML, MU
      DOUBLE PRECISION   AKK, ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANHB
      COMPLEX*16         ZDOTC
      EXTERNAL           LSAME, DLAMCH, ZLANHB, ZDOTC
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZDSCAL, ZHER, ZTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DIMAG, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = ZLANHB( '1', UPLO, N, KD, A, LDA, RWORK )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Check the imaginary parts of the diagonal elements and return with
*     an error code if any are nonzero.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 10 J = 1, N
            IF( DIMAG( AFAC( KD+1, J ) ).NE.ZERO ) THEN
               RESID = ONE / EPS
               RETURN
            END IF
   10    CONTINUE
      ELSE
         DO 20 J = 1, N
            IF( DIMAG( AFAC( 1, J ) ).NE.ZERO ) THEN
               RESID = ONE / EPS
               RETURN
            END IF
   20    CONTINUE
      END IF
*
*     Compute the product U'*U, overwriting U.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 30 K = N, 1, -1
            KC = MAX( 1, KD+2-K )
            KLEN = KD + 1 - KC
*
*           Compute the (K,K) element of the result.
*
            AKK = ZDOTC( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 )
            AFAC( KD+1, K ) = AKK
*
*           Compute the rest of column K.
*
            IF( KLEN.GT.0 )
     $         CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', KLEN,
     $                     AFAC( KD+1, K-KLEN ), LDAFAC-1,
     $                     AFAC( KC, K ), 1 )
*
   30    CONTINUE
*
*     UPLO = 'L':  Compute the product L*L', overwriting L.
*
      ELSE
         DO 40 K = N, 1, -1
            KLEN = MIN( KD, N-K )
*
*           Add a multiple of column K of the factor L to each of
*           columns K+1 through N.
*
            IF( KLEN.GT.0 )
     $         CALL ZHER( 'Lower', KLEN, ONE, AFAC( 2, K ), 1,
     $                    AFAC( 1, K+1 ), LDAFAC-1 )
*
*           Scale column K by the diagonal element.
*
            AKK = AFAC( 1, K )
            CALL ZDSCAL( KLEN+1, AKK, AFAC( 1, K ), 1 )
*
   40    CONTINUE
      END IF
*
*     Compute the difference  L*L' - A  or  U'*U - A.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 60 J = 1, N
            MU = MAX( 1, KD+2-J )
            DO 50 I = MU, KD + 1
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
   50       CONTINUE
   60    CONTINUE
      ELSE
         DO 80 J = 1, N
            ML = MIN( KD+1, N-J+1 )
            DO 70 I = 1, ML
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
   70       CONTINUE
   80    CONTINUE
      END IF
*
*     Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
*
      RESID = ZLANHB( '1', UPLO, N, KD, AFAC, LDAFAC, RWORK )
*
      RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
*
      RETURN
*
*     End of ZPBT01
*
      END