summaryrefslogtreecommitdiff
path: root/TESTING/LIN/zlqt02.f
blob: 8b7eb4f5740eab6dc29cc97cd785e8f928f87b5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
      SUBROUTINE ZLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RESULT( * ), RWORK( * )
      COMPLEX*16         A( LDA, * ), AF( LDA, * ), L( LDA, * ),
     $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with
*  orthonornmal rows that is defined as the product of k elementary
*  reflectors.
*
*  Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates
*  the orthogonal matrix Q defined by the factorization of the first k
*  rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
*  checks that the rows of Q are orthonormal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q to be generated.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q to be generated.
*          N >= M >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. M >= K >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The m-by-n matrix A which was factorized by ZLQT01.
*
*  AF      (input) COMPLEX*16 array, dimension (LDA,N)
*          Details of the LQ factorization of A, as returned by ZGELQF.
*          See ZGELQF for further details.
*
*  Q       (workspace) COMPLEX*16 array, dimension (LDA,N)
*
*  L       (workspace) COMPLEX*16 array, dimension (LDA,M)
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*
*  TAU     (input) COMPLEX*16 array, dimension (M)
*          The scalar factors of the elementary reflectors corresponding
*          to the LQ factorization in AF.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         ROGUE
      PARAMETER          ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      DOUBLE PRECISION   ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
      EXTERNAL           DLAMCH, ZLANGE, ZLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZHERK, ZLACPY, ZLASET, ZUNGLQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Copy the first k rows of the factorization to the array Q
*
      CALL ZLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
      CALL ZLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
*     Generate the first n columns of the matrix Q
*
      SRNAMT = 'ZUNGLQ'
      CALL ZUNGLQ( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy L(1:k,1:m)
*
      CALL ZLASET( 'Full', K, M, DCMPLX( ZERO ), DCMPLX( ZERO ), L,
     $             LDA )
      CALL ZLACPY( 'Lower', K, M, AF, LDA, L, LDA )
*
*     Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)'
*
      CALL ZGEMM( 'No transpose', 'Conjugate transpose', K, M, N,
     $            DCMPLX( -ONE ), A, LDA, Q, LDA, DCMPLX( ONE ), L,
     $            LDA )
*
*     Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) .
*
      ANORM = ZLANGE( '1', K, N, A, LDA, RWORK )
      RESID = ZLANGE( '1', K, M, L, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), L, LDA )
      CALL ZHERK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, L,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = ZLANSY( '1', 'Upper', M, L, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of ZLQT02
*
      END