summaryrefslogtreecommitdiff
path: root/TESTING/LIN/zgbt01.f
blob: 1c95fb606bbecd1047edea6983f99d6ce104d391 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
*> \brief \b ZGBT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
*                          RESID )
* 
*       .. Scalar Arguments ..
*       INTEGER            KL, KU, LDA, LDAFAC, M, N
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGBT01 reconstructs a band matrix  A  from its L*U factorization and
*> computes the residual:
*>    norm(L*U - A) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*>
*> The expression L*U - A is computed one column at a time, so A and
*> AFAC are not modified.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The number of subdiagonals within the band of A.  KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The number of superdiagonals within the band of A.  KU >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The original matrix A in band storage, stored in rows 1 to
*>          KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER.
*>          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
*>          The factored form of the matrix A.  AFAC contains the banded
*>          factors L and U from the L*U factorization, as computed by
*>          ZGBTRF.  U is stored as an upper triangular band matrix with
*>          KL+KU superdiagonals in rows 1 to KL+KU+1, and the
*>          multipliers used during the factorization are stored in rows
*>          KL+KU+2 to 2*KL+KU+1.  See ZGBTRF for further details.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*>          LDAFAC is INTEGER
*>          The leading dimension of the array AFAC.
*>          LDAFAC >= max(1,2*KL*KU+1).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (min(M,N))
*>          The pivot indices from ZGBTRF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (2*KL+KU+1)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          norm(L*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            KL, KU, LDA, LDAFAC, M, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
      DOUBLE PRECISION   ANORM, EPS
      COMPLEX*16         T
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DZASUM
      EXTERNAL           DLAMCH, DZASUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZCOPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick exit if M = 0 or N = 0.
*
      RESID = ZERO
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
*     Determine EPS and the norm of A.
*
      EPS = DLAMCH( 'Epsilon' )
      KD = KU + 1
      ANORM = ZERO
      DO 10 J = 1, N
         I1 = MAX( KD+1-J, 1 )
         I2 = MIN( KD+M-J, KL+KD )
         IF( I2.GE.I1 )
     $      ANORM = MAX( ANORM, DZASUM( I2-I1+1, A( I1, J ), 1 ) )
   10 CONTINUE
*
*     Compute one column at a time of L*U - A.
*
      KD = KL + KU + 1
      DO 40 J = 1, N
*
*        Copy the J-th column of U to WORK.
*
         JU = MIN( KL+KU, J-1 )
         JL = MIN( KL, M-J )
         LENJ = MIN( M, J ) - J + JU + 1
         IF( LENJ.GT.0 ) THEN
            CALL ZCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
            DO 20 I = LENJ + 1, JU + JL + 1
               WORK( I ) = ZERO
   20       CONTINUE
*
*           Multiply by the unit lower triangular matrix L.  Note that L
*           is stored as a product of transformations and permutations.
*
            DO 30 I = MIN( M-1, J ), J - JU, -1
               IL = MIN( KL, M-I )
               IF( IL.GT.0 ) THEN
                  IW = I - J + JU + 1
                  T = WORK( IW )
                  CALL ZAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
     $                        1 )
                  IP = IPIV( I )
                  IF( I.NE.IP ) THEN
                     IP = IP - J + JU + 1
                     WORK( IW ) = WORK( IP )
                     WORK( IP ) = T
                  END IF
               END IF
   30       CONTINUE
*
*           Subtract the corresponding column of A.
*
            JUA = MIN( JU, KU )
            IF( JUA+JL+1.GT.0 )
     $         CALL ZAXPY( JUA+JL+1, -DCMPLX( ONE ), A( KU+1-JUA, J ),
     $                     1, WORK( JU+1-JUA ), 1 )
*
*           Compute the 1-norm of the column.
*
            RESID = MAX( RESID, DZASUM( JU+JL+1, WORK, 1 ) )
         END IF
   40 CONTINUE
*
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of ZGBT01
*
      END