summaryrefslogtreecommitdiff
path: root/TESTING/LIN/zebchvxx.f
blob: d5debfab70a47a9f91ccdf4bfec5430c70533862 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
      SUBROUTINE ZEBCHVXX( THRESH, PATH )
      IMPLICIT NONE
*     .. Scalar Arguments ..
      DOUBLE PRECISION  THRESH
      CHARACTER*3       PATH
*
*  Purpose
*  ======
*
*  ZEBCHVXX will run Z**SVXX on a series of Hilbert matrices and then
*  compare the error bounds returned by Z**SVXX to see if the returned
*  answer indeed falls within those bounds.
*
*  Eight test ratios will be computed.  The tests will pass if they are .LT.
*  THRESH.  There are two cases that are determined by 1 / (SQRT( N ) * EPS).
*  If that value is .LE. to the component wise reciprocal condition number,
*  it uses the guaranteed case, other wise it uses the unguaranteed case.
*
*  Test ratios:
*     Let Xc be X_computed and Xt be X_truth.
*     The norm used is the infinity norm.

*     Let A be the guaranteed case and B be the unguaranteed case.
*
*       1. Normwise guaranteed forward error bound.
*       A: norm ( abs( Xc - Xt ) / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ) and
*          ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N),10) * EPS.
*          If these conditions are met, the test ratio is set to be
*          ERRBND( *, nwise_i, bnd_i ) / MAX(SQRT(N), 10).  Otherwise it is 1/EPS.
*       B: For this case, CGESVXX should just return 1.  If it is less than
*          one, treat it the same as in 1A.  Otherwise it fails. (Set test
*          ratio to ERRBND( *, nwise_i, bnd_i ) * THRESH?)
*
*       2. Componentwise guaranteed forward error bound.
*       A: norm ( abs( Xc(j) - Xt(j) ) ) / norm (Xt(j)) .LE. ERRBND( *, cwise_i, bnd_i )
*          for all j .AND. ERRBND( *, cwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS.
*          If these conditions are met, the test ratio is set to be
*          ERRBND( *, cwise_i, bnd_i ) / MAX(SQRT(N), 10).  Otherwise it is 1/EPS.
*       B: Same as normwise test ratio.
*
*       3. Backwards error.
*       A: The test ratio is set to BERR/EPS.
*       B: Same test ratio.
*
*       4. Reciprocal condition number.
*       A: A condition number is computed with Xt and compared with the one
*          returned from CGESVXX.  Let RCONDc be the RCOND returned by CGESVXX
*          and RCONDt be the RCOND from the truth value.  Test ratio is set to
*          MAX(RCONDc/RCONDt, RCONDt/RCONDc).
*       B: Test ratio is set to 1 / (EPS * RCONDc).
*
*       5. Reciprocal normwise condition number.
*       A: The test ratio is set to
*          MAX(ERRBND( *, nwise_i, cond_i ) / NCOND, NCOND / ERRBND( *, nwise_i, cond_i )).
*       B: Test ratio is set to 1 / (EPS * ERRBND( *, nwise_i, cond_i )).
*
*       6. Reciprocal componentwise condition number.
*       A: Test ratio is set to
*          MAX(ERRBND( *, cwise_i, cond_i ) / CCOND, CCOND / ERRBND( *, cwise_i, cond_i )).
*       B: Test ratio is set to 1 / (EPS * ERRBND( *, cwise_i, cond_i )).
*
*     .. Parameters ..
*     NMAX is determined by the largest number in the inverse of the hilbert
*     matrix.  Precision is exhausted when the largest entry in it is greater
*     than 2 to the power of the number of bits in the fraction of the data
*     type used plus one, which is 24 for single precision.
*     NMAX should be 6 for single and 11 for double.

      INTEGER            NMAX, NPARAMS, NERRBND, NTESTS, KL, KU
      PARAMETER          (NMAX = 10, NPARAMS = 2, NERRBND = 3,
     $                    NTESTS = 6)

*     .. Local Scalars ..
      INTEGER            N, NRHS, INFO, I ,J, k, NFAIL, LDA,
     $                   N_AUX_TESTS, LDAB, LDAFB
      CHARACTER          FACT, TRANS, UPLO, EQUED
      CHARACTER*2        C2
      CHARACTER(3)       NGUAR, CGUAR
      LOGICAL            printed_guide
      DOUBLE PRECISION   NCOND, CCOND, M, NORMDIF, NORMT, RCOND,
     $                   RNORM, RINORM, SUMR, SUMRI, EPS,
     $                   BERR(NMAX), RPVGRW, ORCOND,
     $                   CWISE_ERR, NWISE_ERR, CWISE_BND, NWISE_BND,
     $                   CWISE_RCOND, NWISE_RCOND,
     $                   CONDTHRESH, ERRTHRESH
      COMPLEX*16         ZDUM

*     .. Local Arrays ..
      DOUBLE PRECISION   TSTRAT(NTESTS), RINV(NMAX), PARAMS(NPARAMS),
     $                   S(NMAX),R(NMAX),C(NMAX),RWORK(3*NMAX),
     $                   DIFF(NMAX, NMAX),
     $                   ERRBND_N(NMAX*3), ERRBND_C(NMAX*3)
      INTEGER            IPIV(NMAX)
      COMPLEX*16         A(NMAX,NMAX),INVHILB(NMAX,NMAX),X(NMAX,NMAX),
     $                   WORK(NMAX*3*5), AF(NMAX, NMAX),B(NMAX, NMAX),
     $                   ACOPY(NMAX, NMAX),
     $                   AB( (NMAX-1)+(NMAX-1)+1, NMAX ),
     $                   ABCOPY( (NMAX-1)+(NMAX-1)+1, NMAX ),
     $                   AFB( 2*(NMAX-1)+(NMAX-1)+1, NMAX )

*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH

*     .. External Subroutines ..
      EXTERNAL           ZLAHILB, ZGESVXX, ZPOSVXX, ZSYSVXX,
     $                   ZGBSVXX, ZLACPY, LSAMEN
      LOGICAL            LSAMEN

*     .. Intrinsic Functions ..
      INTRINSIC          SQRT, MAX, ABS, DBLE, DIMAG

*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1

*     .. Statement Function Definitions ..
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )

*     .. Parameters ..
      INTEGER            NWISE_I, CWISE_I
      PARAMETER          (NWISE_I = 1, CWISE_I = 1)
      INTEGER            BND_I, COND_I
      PARAMETER          (BND_I = 2, COND_I = 3)

*  Create the loop to test out the Hilbert matrices

      FACT = 'E'
      UPLO = 'U'
      TRANS = 'N'
      EQUED = 'N'
      EPS = DLAMCH('Epsilon')
      NFAIL = 0
      N_AUX_TESTS = 0
      LDA = NMAX
      LDAB = (NMAX-1)+(NMAX-1)+1
      LDAFB = 2*(NMAX-1)+(NMAX-1)+1
      C2 = PATH( 2: 3 )

*     Main loop to test the different Hilbert Matrices.

      printed_guide = .false.

      DO N = 1 , NMAX
         PARAMS(1) = -1
         PARAMS(2) = -1

         KL = N-1
         KU = N-1
         NRHS = n
         M = MAX(SQRT(DBLE(N)), 10.0D+0)

*        Generate the Hilbert matrix, its inverse, and the
*        right hand side, all scaled by the LCM(1,..,2N-1).
         CALL ZLAHILB(N, N, A, LDA, INVHILB, LDA, B,
     $        LDA, WORK, INFO, PATH)

*        Copy A into ACOPY.
         CALL ZLACPY('ALL', N, N, A, NMAX, ACOPY, NMAX)

*        Store A in band format for GB tests
         DO J = 1, N
            DO I = 1, KL+KU+1
               AB( I, J ) = (0.0D+0,0.0D+0)
            END DO
         END DO
         DO J = 1, N
            DO I = MAX( 1, J-KU ), MIN( N, J+KL )
               AB( KU+1+I-J, J ) = A( I, J )
            END DO
         END DO

*        Copy AB into ABCOPY.
         DO J = 1, N
            DO I = 1, KL+KU+1
               ABCOPY( I, J ) = (0.0D+0,0.0D+0)
            END DO
         END DO
         CALL ZLACPY('ALL', KL+KU+1, N, AB, LDAB, ABCOPY, LDAB)

*        Call Z**SVXX with default PARAMS and N_ERR_BND = 3.
         IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
            CALL ZSYSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
     $           IPIV, EQUED, S, B, LDA, X, LDA, ORCOND,
     $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
     $           PARAMS, WORK, RWORK, INFO)
         ELSE IF ( LSAMEN( 2, C2, 'PO' ) ) THEN
            CALL ZPOSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
     $           EQUED, S, B, LDA, X, LDA, ORCOND,
     $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
     $           PARAMS, WORK, RWORK, INFO)
         ELSE IF ( LSAMEN( 2, C2, 'HE' ) ) THEN
            CALL ZHESVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
     $           IPIV, EQUED, S, B, LDA, X, LDA, ORCOND,
     $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
     $           PARAMS, WORK, RWORK, INFO)
         ELSE IF ( LSAMEN( 2, C2, 'GB' ) ) THEN
            CALL ZGBSVXX(FACT, TRANS, N, KL, KU, NRHS, ABCOPY,
     $           LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B,
     $           LDA, X, LDA, ORCOND, RPVGRW, BERR, NERRBND,
     $           ERRBND_N, ERRBND_C, NPARAMS, PARAMS, WORK, RWORK,
     $           INFO)
         ELSE
            CALL ZGESVXX(FACT, TRANS, N, NRHS, ACOPY, LDA, AF, LDA,
     $           IPIV, EQUED, R, C, B, LDA, X, LDA, ORCOND,
     $           RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
     $           PARAMS, WORK, RWORK, INFO)
         END IF

         N_AUX_TESTS = N_AUX_TESTS + 1
         IF (ORCOND .LT. EPS) THEN
!        Either factorization failed or the matrix is flagged, and 1 <=
!        INFO <= N+1. We don't decide based on rcond anymore.
!            IF (INFO .EQ. 0 .OR. INFO .GT. N+1) THEN
!               NFAIL = NFAIL + 1
!               WRITE (*, FMT=8000) N, INFO, ORCOND, RCOND
!            END IF
         ELSE
!        Either everything succeeded (INFO == 0) or some solution failed
!        to converge (INFO > N+1).
            IF (INFO .GT. 0 .AND. INFO .LE. N+1) THEN
               NFAIL = NFAIL + 1
               WRITE (*, FMT=8000) C2, N, INFO, ORCOND, RCOND
            END IF
         END IF

*        Calculating the difference between Z**SVXX's X and the true X.
         DO I = 1,N
            DO J =1,NRHS
               DIFF(I,J) = X(I,J) - INVHILB(I,J)
            END DO
         END DO

*        Calculating the RCOND
         RNORM = 0
         RINORM = 0
         IF ( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'SY' ) .OR.
     $        LSAMEN( 2, C2, 'HE' ) ) THEN
            DO I = 1, N
               SUMR = 0
               SUMRI = 0
               DO J = 1, N
                  SUMR = SUMR + S(I) * CABS1(A(I,J)) * S(J)
                  SUMRI = SUMRI + CABS1(INVHILB(I, J)) / (S(J) * S(I))
               END DO
               RNORM = MAX(RNORM,SUMR)
               RINORM = MAX(RINORM,SUMRI)
            END DO
         ELSE IF ( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'GB' ) )
     $           THEN
            DO I = 1, N
               SUMR = 0
               SUMRI = 0
               DO J = 1, N
                  SUMR = SUMR + R(I) * CABS1(A(I,J)) * C(J)
                  SUMRI = SUMRI + CABS1(INVHILB(I, J)) / (R(J) * C(I))
               END DO
               RNORM = MAX(RNORM,SUMR)
               RINORM = MAX(RINORM,SUMRI)
            END DO
         END IF

         RNORM = RNORM / CABS1(A(1, 1))
         RCOND = 1.0D+0/(RNORM * RINORM)

*        Calculating the R for normwise rcond.
         DO I = 1, N
            RINV(I) = 0.0D+0
         END DO
         DO J = 1, N
            DO I = 1, N
               RINV(I) = RINV(I) + CABS1(A(I,J))
            END DO
         END DO

*        Calculating the Normwise rcond.
         RINORM = 0.0D+0
         DO I = 1, N
            SUMRI = 0.0D+0
            DO J = 1, N
               SUMRI = SUMRI + CABS1(INVHILB(I,J) * RINV(J))
            END DO
            RINORM = MAX(RINORM, SUMRI)
         END DO

!        invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
!        by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
         NCOND = CABS1(A(1,1)) / RINORM

         CONDTHRESH = M * EPS
         ERRTHRESH = M * EPS

         DO K = 1, NRHS
            NORMT = 0.0D+0
            NORMDIF = 0.0D+0
            CWISE_ERR = 0.0D+0
            DO I = 1, N
               NORMT = MAX(CABS1(INVHILB(I, K)), NORMT)
               NORMDIF = MAX(CABS1(X(I,K) - INVHILB(I,K)), NORMDIF)
               IF (INVHILB(I,K) .NE. 0.0D+0) THEN
                  CWISE_ERR = MAX(CABS1(X(I,K) - INVHILB(I,K))
     $                            /CABS1(INVHILB(I,K)), CWISE_ERR)
               ELSE IF (X(I, K) .NE. 0.0D+0) THEN
                  CWISE_ERR = DLAMCH('OVERFLOW')
               END IF
            END DO
            IF (NORMT .NE. 0.0D+0) THEN
               NWISE_ERR = NORMDIF / NORMT
            ELSE IF (NORMDIF .NE. 0.0D+0) THEN
               NWISE_ERR = DLAMCH('OVERFLOW')
            ELSE
               NWISE_ERR = 0.0D+0
            ENDIF

            DO I = 1, N
               RINV(I) = 0.0D+0
            END DO
            DO J = 1, N
               DO I = 1, N
                  RINV(I) = RINV(I) + CABS1(A(I, J) * INVHILB(J, K))
               END DO
            END DO
            RINORM = 0.0D+0
            DO I = 1, N
               SUMRI = 0.0D+0
               DO J = 1, N
                  SUMRI = SUMRI
     $                 + CABS1(INVHILB(I, J) * RINV(J) / INVHILB(I, K))
               END DO
               RINORM = MAX(RINORM, SUMRI)
            END DO
!        invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
!        by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
            CCOND = CABS1(A(1,1))/RINORM

!        Forward error bound tests
            NWISE_BND = ERRBND_N(K + (BND_I-1)*NRHS)
            CWISE_BND = ERRBND_C(K + (BND_I-1)*NRHS)
            NWISE_RCOND = ERRBND_N(K + (COND_I-1)*NRHS)
            CWISE_RCOND = ERRBND_C(K + (COND_I-1)*NRHS)
!            write (*,*) 'nwise : ', n, k, ncond, nwise_rcond,
!     $           condthresh, ncond.ge.condthresh
!            write (*,*) 'nwise2: ', k, nwise_bnd, nwise_err, errthresh
            IF (NCOND .GE. CONDTHRESH) THEN
               NGUAR = 'YES'
               IF (NWISE_BND .GT. ERRTHRESH) THEN
                  TSTRAT(1) = 1/(2.0D+0*EPS)
               ELSE
                  IF (NWISE_BND .NE. 0.0D+0) THEN
                     TSTRAT(1) = NWISE_ERR / NWISE_BND
                  ELSE IF (NWISE_ERR .NE. 0.0D+0) THEN
                     TSTRAT(1) = 1/(16.0*EPS)
                  ELSE
                     TSTRAT(1) = 0.0D+0
                  END IF
                  IF (TSTRAT(1) .GT. 1.0D+0) THEN
                     TSTRAT(1) = 1/(4.0D+0*EPS)
                  END IF
               END IF
            ELSE
               NGUAR = 'NO'
               IF (NWISE_BND .LT. 1.0D+0) THEN
                  TSTRAT(1) = 1/(8.0D+0*EPS)
               ELSE
                  TSTRAT(1) = 1.0D+0
               END IF
            END IF
!            write (*,*) 'cwise : ', n, k, ccond, cwise_rcond,
!     $           condthresh, ccond.ge.condthresh
!            write (*,*) 'cwise2: ', k, cwise_bnd, cwise_err, errthresh
            IF (CCOND .GE. CONDTHRESH) THEN
               CGUAR = 'YES'
               IF (CWISE_BND .GT. ERRTHRESH) THEN
                  TSTRAT(2) = 1/(2.0D+0*EPS)
               ELSE
                  IF (CWISE_BND .NE. 0.0D+0) THEN
                     TSTRAT(2) = CWISE_ERR / CWISE_BND
                  ELSE IF (CWISE_ERR .NE. 0.0D+0) THEN
                     TSTRAT(2) = 1/(16.0D+0*EPS)
                  ELSE
                     TSTRAT(2) = 0.0D+0
                  END IF
                  IF (TSTRAT(2) .GT. 1.0D+0) TSTRAT(2) = 1/(4.0D+0*EPS)
               END IF
            ELSE
               CGUAR = 'NO'
               IF (CWISE_BND .LT. 1.0D+0) THEN
                  TSTRAT(2) = 1/(8.0D+0*EPS)
               ELSE
                  TSTRAT(2) = 1.0D+0
               END IF
            END IF

!     Backwards error test
            TSTRAT(3) = BERR(K)/EPS

!     Condition number tests
            TSTRAT(4) = RCOND / ORCOND
            IF (RCOND .GE. CONDTHRESH .AND. TSTRAT(4) .LT. 1.0D+0)
     $         TSTRAT(4) = 1.0D+0 / TSTRAT(4)

            TSTRAT(5) = NCOND / NWISE_RCOND
            IF (NCOND .GE. CONDTHRESH .AND. TSTRAT(5) .LT. 1.0D+0)
     $         TSTRAT(5) = 1.0D+0 / TSTRAT(5)

            TSTRAT(6) = CCOND / NWISE_RCOND
            IF (CCOND .GE. CONDTHRESH .AND. TSTRAT(6) .LT. 1.0D+0)
     $         TSTRAT(6) = 1.0D+0 / TSTRAT(6)

            DO I = 1, NTESTS
               IF (TSTRAT(I) .GT. THRESH) THEN
                  IF (.NOT.PRINTED_GUIDE) THEN
                     WRITE(*,*)
                     WRITE( *, 9996) 1
                     WRITE( *, 9995) 2
                     WRITE( *, 9994) 3
                     WRITE( *, 9993) 4
                     WRITE( *, 9992) 5
                     WRITE( *, 9991) 6
                     WRITE( *, 9990) 7
                     WRITE( *, 9989) 8
                     WRITE(*,*)
                     PRINTED_GUIDE = .TRUE.
                  END IF
                  WRITE( *, 9999) C2, N, K, NGUAR, CGUAR, I, TSTRAT(I)
                  NFAIL = NFAIL + 1
               END IF
            END DO
      END DO

c$$$         WRITE(*,*)
c$$$         WRITE(*,*) 'Normwise Error Bounds'
c$$$         WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,nwise_i,bnd_i)
c$$$         WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,nwise_i,cond_i)
c$$$         WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,nwise_i,rawbnd_i)
c$$$         WRITE(*,*)
c$$$         WRITE(*,*) 'Componentwise Error Bounds'
c$$$         WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,cwise_i,bnd_i)
c$$$         WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,cwise_i,cond_i)
c$$$         WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,cwise_i,rawbnd_i)
c$$$         print *, 'Info: ', info
c$$$         WRITE(*,*)
*         WRITE(*,*) 'TSTRAT: ',TSTRAT

      END DO

      WRITE(*,*)
      IF( NFAIL .GT. 0 ) THEN
         WRITE(*,9998) C2, NFAIL, NTESTS*N+N_AUX_TESTS
      ELSE
         WRITE(*,9997) C2
      END IF
 9999 FORMAT( ' Z', A2, 'SVXX: N =', I2, ', RHS = ', I2,
     $     ', NWISE GUAR. = ', A, ', CWISE GUAR. = ', A,
     $     ' test(',I1,') =', G12.5 )
 9998 FORMAT( ' Z', A2, 'SVXX: ', I6, ' out of ', I6,
     $     ' tests failed to pass the threshold' )
 9997 FORMAT( ' Z', A2, 'SVXX passed the tests of error bounds' )
*     Test ratios.
 9996 FORMAT( 3X, I2, ': Normwise guaranteed forward error', / 5X,
     $     'Guaranteed case: if norm ( abs( Xc - Xt )',
     $     ' / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ), then',
     $     / 5X,
     $     'ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS')
 9995 FORMAT( 3X, I2, ': Componentwise guaranteed forward error' )
 9994 FORMAT( 3X, I2, ': Backwards error' )
 9993 FORMAT( 3X, I2, ': Reciprocal condition number' )
 9992 FORMAT( 3X, I2, ': Reciprocal normwise condition number' )
 9991 FORMAT( 3X, I2, ': Raw normwise error estimate' )
 9990 FORMAT( 3X, I2, ': Reciprocal componentwise condition number' )
 9989 FORMAT( 3X, I2, ': Raw componentwise error estimate' )

 8000 FORMAT( ' Z', A2, 'SVXX: N =', I2, ', INFO = ', I3,
     $     ', ORCOND = ', G12.5, ', real RCOND = ', G12.5 )

      END