1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
|
*> \brief \b ZDRVRFP
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
* + THRESH, A, ASAV, AFAC, AINV, B,
* + BSAV, XACT, X, ARF, ARFINV,
* + Z_WORK_ZLATMS, Z_WORK_ZPOT02,
* + Z_WORK_ZPOT03, D_WORK_ZLATMS, D_WORK_ZLANHE,
* + D_WORK_ZPOT01, D_WORK_ZPOT02, D_WORK_ZPOT03 )
*
* .. Scalar Arguments ..
* INTEGER NN, NNS, NNT, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* INTEGER NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
* COMPLEX*16 A( * )
* COMPLEX*16 AINV( * )
* COMPLEX*16 ASAV( * )
* COMPLEX*16 B( * )
* COMPLEX*16 BSAV( * )
* COMPLEX*16 AFAC( * )
* COMPLEX*16 ARF( * )
* COMPLEX*16 ARFINV( * )
* COMPLEX*16 XACT( * )
* COMPLEX*16 X( * )
* COMPLEX*16 Z_WORK_ZLATMS( * )
* COMPLEX*16 Z_WORK_ZPOT02( * )
* COMPLEX*16 Z_WORK_ZPOT03( * )
* DOUBLE PRECISION D_WORK_ZLATMS( * )
* DOUBLE PRECISION D_WORK_ZLANHE( * )
* DOUBLE PRECISION D_WORK_ZPOT01( * )
* DOUBLE PRECISION D_WORK_ZPOT02( * )
* DOUBLE PRECISION D_WORK_ZPOT03( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRVRFP tests the LAPACK RFP routines:
*> ZPFTRF, ZPFTRS, and ZPFTRI.
*>
*> This testing routine follow the same tests as ZDRVPO (test for the full
*> format Symmetric Positive Definite solver).
*>
*> The tests are performed in Full Format, conversion back and forth from
*> full format to RFP format are performed using the routines ZTRTTF and
*> ZTFTTR.
*>
*> First, a specific matrix A of size N is created. There is nine types of
*> different matrixes possible.
*> 1. Diagonal 6. Random, CNDNUM = sqrt(0.1/EPS)
*> 2. Random, CNDNUM = 2 7. Random, CNDNUM = 0.1/EPS
*> *3. First row and column zero 8. Scaled near underflow
*> *4. Last row and column zero 9. Scaled near overflow
*> *5. Middle row and column zero
*> (* - tests error exits from ZPFTRF, no test ratios are computed)
*> A solution XACT of size N-by-NRHS is created and the associated right
*> hand side B as well. Then ZPFTRF is called to compute L (or U), the
*> Cholesky factor of A. Then L (or U) is used to solve the linear system
*> of equations AX = B. This gives X. Then L (or U) is used to compute the
*> inverse of A, AINV. The following four tests are then performed:
*> (1) norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*> norm( U'*U - A ) / ( N * norm(A) * EPS ),
*> (2) norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
*> (3) norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> (4) ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
*> where EPS is the machine precision, RCOND the condition number of A, and
*> norm( . ) the 1-norm for (1,2,3) and the inf-norm for (4).
*> Errors occur when INFO parameter is not as expected. Failures occur when
*> a test ratios is greater than THRES.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right-hand sides NRHS.
*> \endverbatim
*>
*> \param[in] NNT
*> \verbatim
*> NNT is INTEGER
*> The number of values of MATRIX TYPE contained in the vector NTVAL.
*> \endverbatim
*>
*> \param[in] NTVAL
*> \verbatim
*> NTVAL is INTEGER array, dimension (NNT)
*> The values of matrix type (between 0 and 9 for PO/PP/PF matrices).
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] ASAV
*> \verbatim
*> ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AINV
*> \verbatim
*> AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] BSAV
*> \verbatim
*> BSAV is COMPLEX*16 array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX*16 array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] ARF
*> \verbatim
*> ARF is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2)
*> \endverbatim
*>
*> \param[out] ARFINV
*> \verbatim
*> ARFINV is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2)
*> \endverbatim
*>
*> \param[out] Z_WORK_ZLATMS
*> \verbatim
*> Z_WORK_ZLATMS is COMPLEX*16 array, dimension ( 3*NMAX )
*> \endverbatim
*>
*> \param[out] Z_WORK_ZPOT02
*> \verbatim
*> Z_WORK_ZPOT02 is COMPLEX*16 array, dimension ( NMAX*MAXRHS )
*> \endverbatim
*>
*> \param[out] Z_WORK_ZPOT03
*> \verbatim
*> Z_WORK_ZPOT03 is COMPLEX*16 array, dimension ( NMAX*NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZLATMS
*> \verbatim
*> D_WORK_ZLATMS is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZLANHE
*> \verbatim
*> D_WORK_ZLANHE is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZPOT01
*> \verbatim
*> D_WORK_ZPOT01 is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZPOT02
*> \verbatim
*> D_WORK_ZPOT02 is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZPOT03
*> \verbatim
*> D_WORK_ZPOT03 is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2013
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
+ THRESH, A, ASAV, AFAC, AINV, B,
+ BSAV, XACT, X, ARF, ARFINV,
+ Z_WORK_ZLATMS, Z_WORK_ZPOT02,
+ Z_WORK_ZPOT03, D_WORK_ZLATMS, D_WORK_ZLANHE,
+ D_WORK_ZPOT01, D_WORK_ZPOT02, D_WORK_ZPOT03 )
*
* -- LAPACK test routine (version 3.5.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2013
*
* .. Scalar Arguments ..
INTEGER NN, NNS, NNT, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
INTEGER NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
COMPLEX*16 A( * )
COMPLEX*16 AINV( * )
COMPLEX*16 ASAV( * )
COMPLEX*16 B( * )
COMPLEX*16 BSAV( * )
COMPLEX*16 AFAC( * )
COMPLEX*16 ARF( * )
COMPLEX*16 ARFINV( * )
COMPLEX*16 XACT( * )
COMPLEX*16 X( * )
COMPLEX*16 Z_WORK_ZLATMS( * )
COMPLEX*16 Z_WORK_ZPOT02( * )
COMPLEX*16 Z_WORK_ZPOT03( * )
DOUBLE PRECISION D_WORK_ZLATMS( * )
DOUBLE PRECISION D_WORK_ZLANHE( * )
DOUBLE PRECISION D_WORK_ZPOT01( * )
DOUBLE PRECISION D_WORK_ZPOT02( * )
DOUBLE PRECISION D_WORK_ZPOT03( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER NTESTS
PARAMETER ( NTESTS = 4 )
* ..
* .. Local Scalars ..
LOGICAL ZEROT
INTEGER I, INFO, IUPLO, LDA, LDB, IMAT, NERRS, NFAIL,
+ NRHS, NRUN, IZERO, IOFF, K, NT, N, IFORM, IIN,
+ IIT, IIS
CHARACTER DIST, CTYPE, UPLO, CFORM
INTEGER KL, KU, MODE
DOUBLE PRECISION ANORM, AINVNM, CNDNUM, RCONDC
* ..
* .. Local Arrays ..
CHARACTER UPLOS( 2 ), FORMS( 2 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Functions ..
DOUBLE PRECISION ZLANHE
EXTERNAL ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, ZGET04, ZTFTTR, ZLACPY,
+ ZLAIPD, ZLARHS, ZLATB4, ZLATMS, ZPFTRI, ZPFTRF,
+ ZPFTRS, ZPOT01, ZPOT02, ZPOT03, ZPOTRI, ZPOTRF,
+ ZTRTTF
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / 'U', 'L' /
DATA FORMS / 'N', 'C' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
DO 130 IIN = 1, NN
*
N = NVAL( IIN )
LDA = MAX( N, 1 )
LDB = MAX( N, 1 )
*
DO 980 IIS = 1, NNS
*
NRHS = NSVAL( IIS )
*
DO 120 IIT = 1, NNT
*
IMAT = NTVAL( IIT )
*
* If N.EQ.0, only consider the first type
*
IF( N.EQ.0 .AND. IIT.GE.1 ) GO TO 120
*
* Skip types 3, 4, or 5 if the matrix size is too small.
*
IF( IMAT.EQ.4 .AND. N.LE.1 ) GO TO 120
IF( IMAT.EQ.5 .AND. N.LE.2 ) GO TO 120
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
DO 110 IUPLO = 1, 2
UPLO = UPLOS( IUPLO )
*
* Do first for CFORM = 'N', then for CFORM = 'C'
*
DO 100 IFORM = 1, 2
CFORM = FORMS( IFORM )
*
* Set up parameters with ZLATB4 and generate a test
* matrix with ZLATMS.
*
CALL ZLATB4( 'ZPO', IMAT, N, N, CTYPE, KL, KU,
+ ANORM, MODE, CNDNUM, DIST )
*
SRNAMT = 'ZLATMS'
CALL ZLATMS( N, N, DIST, ISEED, CTYPE,
+ D_WORK_ZLATMS,
+ MODE, CNDNUM, ANORM, KL, KU, UPLO, A,
+ LDA, Z_WORK_ZLATMS, INFO )
*
* Check error code from ZLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( 'ZPF', 'ZLATMS', INFO, 0, UPLO, N,
+ N, -1, -1, -1, IIT, NFAIL, NERRS,
+ NOUT )
GO TO 100
END IF
*
* For types 3-5, zero one row and column of the matrix to
* test that INFO is returned correctly.
*
ZEROT = IMAT.GE.3 .AND. IMAT.LE.5
IF( ZEROT ) THEN
IF( IIT.EQ.3 ) THEN
IZERO = 1
ELSE IF( IIT.EQ.4 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
IOFF = ( IZERO-1 )*LDA
*
* Set row and column IZERO of A to 0.
*
IF( IUPLO.EQ.1 ) THEN
DO 20 I = 1, IZERO - 1
A( IOFF+I ) = ZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
A( IOFF ) = ZERO
IOFF = IOFF + LDA
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
A( IOFF ) = ZERO
IOFF = IOFF + LDA
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
A( IOFF+I ) = ZERO
50 CONTINUE
END IF
ELSE
IZERO = 0
END IF
*
* Set the imaginary part of the diagonals.
*
CALL ZLAIPD( N, A, LDA+1, 0 )
*
* Save a copy of the matrix A in ASAV.
*
CALL ZLACPY( UPLO, N, N, A, LDA, ASAV, LDA )
*
* Compute the condition number of A (RCONDC).
*
IF( ZEROT ) THEN
RCONDC = ZERO
ELSE
*
* Compute the 1-norm of A.
*
ANORM = ZLANHE( '1', UPLO, N, A, LDA,
+ D_WORK_ZLANHE )
*
* Factor the matrix A.
*
CALL ZPOTRF( UPLO, N, A, LDA, INFO )
*
* Form the inverse of A.
*
CALL ZPOTRI( UPLO, N, A, LDA, INFO )
IF ( N .NE. 0 ) THEN
*
* Compute the 1-norm condition number of A.
*
AINVNM = ZLANHE( '1', UPLO, N, A, LDA,
+ D_WORK_ZLANHE )
RCONDC = ( ONE / ANORM ) / AINVNM
*
* Restore the matrix A.
*
CALL ZLACPY( UPLO, N, N, ASAV, LDA, A, LDA )
END IF
*
END IF
*
* Form an exact solution and set the right hand side.
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( 'ZPO', 'N', UPLO, ' ', N, N, KL, KU,
+ NRHS, A, LDA, XACT, LDA, B, LDA,
+ ISEED, INFO )
CALL ZLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
*
* Compute the L*L' or U'*U factorization of the
* matrix and solve the system.
*
CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDB )
*
SRNAMT = 'ZTRTTF'
CALL ZTRTTF( CFORM, UPLO, N, AFAC, LDA, ARF, INFO )
SRNAMT = 'ZPFTRF'
CALL ZPFTRF( CFORM, UPLO, N, ARF, INFO )
*
* Check error code from ZPFTRF.
*
IF( INFO.NE.IZERO ) THEN
*
* LANGOU: there is a small hick here: IZERO should
* always be INFO however if INFO is ZERO, ALAERH does not
* complain.
*
CALL ALAERH( 'ZPF', 'ZPFSV ', INFO, IZERO,
+ UPLO, N, N, -1, -1, NRHS, IIT,
+ NFAIL, NERRS, NOUT )
GO TO 100
END IF
*
* Skip the tests if INFO is not 0.
*
IF( INFO.NE.0 ) THEN
GO TO 100
END IF
*
SRNAMT = 'ZPFTRS'
CALL ZPFTRS( CFORM, UPLO, N, NRHS, ARF, X, LDB,
+ INFO )
*
SRNAMT = 'ZTFTTR'
CALL ZTFTTR( CFORM, UPLO, N, ARF, AFAC, LDA, INFO )
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL ZLACPY( UPLO, N, N, AFAC, LDA, ASAV, LDA )
CALL ZPOT01( UPLO, N, A, LDA, AFAC, LDA,
+ D_WORK_ZPOT01, RESULT( 1 ) )
CALL ZLACPY( UPLO, N, N, ASAV, LDA, AFAC, LDA )
*
* Form the inverse and compute the residual.
*
IF(MOD(N,2).EQ.0)THEN
CALL ZLACPY( 'A', N+1, N/2, ARF, N+1, ARFINV,
+ N+1 )
ELSE
CALL ZLACPY( 'A', N, (N+1)/2, ARF, N, ARFINV,
+ N )
END IF
*
SRNAMT = 'ZPFTRI'
CALL ZPFTRI( CFORM, UPLO, N, ARFINV , INFO )
*
SRNAMT = 'ZTFTTR'
CALL ZTFTTR( CFORM, UPLO, N, ARFINV, AINV, LDA,
+ INFO )
*
* Check error code from ZPFTRI.
*
IF( INFO.NE.0 )
+ CALL ALAERH( 'ZPO', 'ZPFTRI', INFO, 0, UPLO, N,
+ N, -1, -1, -1, IMAT, NFAIL, NERRS,
+ NOUT )
*
CALL ZPOT03( UPLO, N, A, LDA, AINV, LDA,
+ Z_WORK_ZPOT03, LDA, D_WORK_ZPOT03,
+ RCONDC, RESULT( 2 ) )
*
* Compute residual of the computed solution.
*
CALL ZLACPY( 'Full', N, NRHS, B, LDA,
+ Z_WORK_ZPOT02, LDA )
CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA,
+ Z_WORK_ZPOT02, LDA, D_WORK_ZPOT02,
+ RESULT( 3 ) )
*
* Check solution from generated exact solution.
*
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
+ RESULT( 4 ) )
NT = 4
*
* Print information about the tests that did not
* pass the threshold.
*
DO 60 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
+ CALL ALADHD( NOUT, 'ZPF' )
WRITE( NOUT, FMT = 9999 )'ZPFSV ', UPLO,
+ N, IIT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
60 CONTINUE
NRUN = NRUN + NT
100 CONTINUE
110 CONTINUE
120 CONTINUE
980 CONTINUE
130 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( 'ZPF', NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 1X, A6, ', UPLO=''', A1, ''', N =', I5, ', type ', I1,
+ ', test(', I1, ')=', G12.5 )
*
RETURN
*
* End of ZDRVRFP
*
END
|