1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
*> \brief \b ZDRVAB
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRVAB( DOTYPE, NM, MVAL, NNS,
* NSVAL, THRESH, NMAX, A, AFAC, B,
* X, WORK, RWORK, SWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* INTEGER NM, NMAX, NNS, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER MVAL( * ), NSVAL( * ), IWORK( * )
* DOUBLE PRECISION RWORK( * )
* COMPLEX SWORK( * )
* COMPLEX*16 A( * ), AFAC( * ), B( * ),
* $ WORK( * ), X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRVAB tests ZCGESV
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NM
*> \verbatim
*> NM is INTEGER
*> The number of values of M contained in the vector MVAL.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for M or N, used in dimensioning
*> the work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (NMAX*NSMAX)
*> where NSMAX is the largest entry in NSVAL.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension
*> (NMAX*max(3,NSMAX*2))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension
*> NMAX
*> \endverbatim
*>
*> \param[out] SWORK
*> \verbatim
*> SWORK is COMPLEX array, dimension
*> (NMAX*(NSMAX+NMAX))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension
*> NMAX
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZDRVAB( DOTYPE, NM, MVAL, NNS,
$ NSVAL, THRESH, NMAX, A, AFAC, B,
$ X, WORK, RWORK, SWORK, IWORK, NOUT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER NM, NMAX, NNS, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER MVAL( * ), NSVAL( * ), IWORK( * )
DOUBLE PRECISION RWORK( * )
COMPLEX SWORK( * )
COMPLEX*16 A( * ), AFAC( * ), B( * ),
$ WORK( * ), X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 11 )
INTEGER NTESTS
PARAMETER ( NTESTS = 1 )
* ..
* .. Local Scalars ..
LOGICAL ZEROT
CHARACTER DIST, TRANS, TYPE, XTYPE
CHARACTER*3 PATH
INTEGER I, IM, IMAT, INFO, IOFF, IRHS,
$ IZERO, KL, KU, LDA, M, MODE, N,
$ NERRS, NFAIL, NIMAT, NRHS, NRUN
DOUBLE PRECISION ANORM, CNDNUM
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. Local Variables ..
INTEGER ITER, KASE
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ZGET08, ZLACPY, ZLARHS, ZLASET,
$ ZLATB4, ZLATMS
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, DBLE, MAX, MIN, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 2006, 2007, 2008, 2009 /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
KASE = 0
PATH( 1: 1 ) = 'Zomplex precision'
PATH( 2: 3 ) = 'GE'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
INFOT = 0
*
* Do for each value of M in MVAL
*
DO 120 IM = 1, NM
M = MVAL( IM )
LDA = MAX( 1, M )
*
N = M
NIMAT = NTYPES
IF( M.LE.0 .OR. N.LE.0 )
$ NIMAT = 1
*
DO 100 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 100
*
* Skip types 5, 6, or 7 if the matrix size is too small.
*
ZEROT = IMAT.GE.5 .AND. IMAT.LE.7
IF( ZEROT .AND. N.LT.IMAT-4 )
$ GO TO 100
*
* Set up parameters with ZLATB4 and generate a test matrix
* with ZLATMS.
*
CALL ZLATB4( PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
*
SRNAMT = 'ZLATMS'
CALL ZLATMS( M, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA,
$ WORK, INFO )
*
* Check error code from ZLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', M, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 100
END IF
*
* For types 5-7, zero one or more columns of the matrix to
* test that INFO is returned correctly.
*
IF( ZEROT ) THEN
IF( IMAT.EQ.5 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.6 ) THEN
IZERO = MIN( M, N )
ELSE
IZERO = MIN( M, N ) / 2 + 1
END IF
IOFF = ( IZERO-1 )*LDA
IF( IMAT.LT.7 ) THEN
DO 20 I = 1, M
A( IOFF+I ) = ZERO
20 CONTINUE
ELSE
CALL ZLASET( 'Full', M, N-IZERO+1, DCMPLX(ZERO),
$ DCMPLX(ZERO), A( IOFF+1 ), LDA )
END IF
ELSE
IZERO = 0
END IF
*
DO 60 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
XTYPE = 'N'
TRANS = 'N'
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( PATH, XTYPE, ' ', TRANS, N, N, KL,
$ KU, NRHS, A, LDA, X, LDA, B,
$ LDA, ISEED, INFO )
*
SRNAMT = 'ZCGESV'
*
KASE = KASE + 1
*
CALL ZLACPY( 'Full', M, N, A, LDA, AFAC, LDA )
*
CALL ZCGESV( N, NRHS, A, LDA, IWORK, B, LDA, X, LDA,
$ WORK, SWORK, RWORK, ITER, INFO)
*
IF (ITER.LT.0) THEN
CALL ZLACPY( 'Full', M, N, AFAC, LDA, A, LDA )
ENDIF
*
* Check error code from ZCGESV. This should be the same as
* the one of DGETRF.
*
IF( INFO.NE.IZERO ) THEN
*
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
NERRS = NERRS + 1
*
IF( INFO.NE.IZERO .AND. IZERO.NE.0 ) THEN
WRITE( NOUT, FMT = 9988 )'ZCGESV',INFO,
$ IZERO,M,IMAT
ELSE
WRITE( NOUT, FMT = 9975 )'ZCGESV',INFO,
$ M, IMAT
END IF
END IF
*
* Skip the remaining test if the matrix is singular.
*
IF( INFO.NE.0 )
$ GO TO 100
*
* Check the quality of the solution
*
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
*
CALL ZGET08( TRANS, N, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 1 ) )
*
* Check if the test passes the tesing.
* Print information about the tests that did not
* pass the testing.
*
* If iterative refinement has been used and claimed to
* be successful (ITER>0), we want
* NORMI(B - A*X)/(NORMI(A)*NORMI(X)*EPS*SRQT(N)) < 1
*
* If double precision has been used (ITER<0), we want
* NORMI(B - A*X)/(NORMI(A)*NORMI(X)*EPS) < THRES
* (Cf. the linear solver testing routines)
*
IF ((THRESH.LE.0.0E+00)
$ .OR.((ITER.GE.0).AND.(N.GT.0)
$ .AND.(RESULT(1).GE.SQRT(DBLE(N))))
$ .OR.((ITER.LT.0).AND.(RESULT(1).GE.THRESH))) THEN
*
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) THEN
WRITE( NOUT, FMT = 8999 )'DGE'
WRITE( NOUT, FMT = '( '' Matrix types:'' )' )
WRITE( NOUT, FMT = 8979 )
WRITE( NOUT, FMT = '( '' Test ratios:'' )' )
WRITE( NOUT, FMT = 8960 )1
WRITE( NOUT, FMT = '( '' Messages:'' )' )
END IF
*
WRITE( NOUT, FMT = 9998 )TRANS, N, NRHS,
$ IMAT, 1, RESULT( 1 )
NFAIL = NFAIL + 1
END IF
NRUN = NRUN + 1
60 CONTINUE
100 CONTINUE
120 CONTINUE
*
* Print a summary of the results.
*
IF( NFAIL.GT.0 ) THEN
WRITE( NOUT, FMT = 9996 )'ZCGESV', NFAIL, NRUN
ELSE
WRITE( NOUT, FMT = 9995 )'ZCGESV', NRUN
END IF
IF( NERRS.GT.0 ) THEN
WRITE( NOUT, FMT = 9994 )NERRS
END IF
*
9998 FORMAT( ' TRANS=''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
$ I2, ', test(', I2, ') =', G12.5 )
9996 FORMAT( 1X, A6, ': ', I6, ' out of ', I6,
$ ' tests failed to pass the threshold' )
9995 FORMAT( /1X, 'All tests for ', A6,
$ ' routines passed the threshold ( ', I6, ' tests run)' )
9994 FORMAT( 6X, I6, ' error messages recorded' )
*
* SUBNAM, INFO, INFOE, M, IMAT
*
9988 FORMAT( ' *** ', A6, ' returned with INFO =', I5, ' instead of ',
$ I5, / ' ==> M =', I5, ', type ',
$ I2 )
*
* SUBNAM, INFO, M, IMAT
*
9975 FORMAT( ' *** Error code from ', A6, '=', I5, ' for M=', I5,
$ ', type ', I2 )
8999 FORMAT( / 1X, A3, ': General dense matrices' )
8979 FORMAT( 4X, '1. Diagonal', 24X, '7. Last n/2 columns zero', / 4X,
$ '2. Upper triangular', 16X,
$ '8. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '3. Lower triangular', 16X, '9. Random, CNDNUM = 0.1/EPS',
$ / 4X, '4. Random, CNDNUM = 2', 13X,
$ '10. Scaled near underflow', / 4X, '5. First column zero',
$ 14X, '11. Scaled near overflow', / 4X,
$ '6. Last column zero' )
8960 FORMAT( 3X, I2, ': norm_1( B - A * X ) / ',
$ '( norm_1(A) * norm_1(X) * EPS * SQRT(N) ) > 1 if ITERREF',
$ / 4x, 'or norm_1( B - A * X ) / ',
$ '( norm_1(A) * norm_1(X) * EPS ) > THRES if DGETRF' )
RETURN
*
* End of ZDRVAB
*
END
|