1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
SUBROUTINE ZCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC,
$ B, X, XACT, TAU, WORK, RWORK, NOUT )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* June 2010
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NM, NMAX, NN, NNB, NOUT, NRHS
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER MVAL( * ), NBVAL( * ), NVAL( * ),
$ NXVAL( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( * ), AC( * ), AF( * ), AL( * ), AQ( * ),
$ B( * ), TAU( * ), WORK( * ), X( * ), XACT( * )
* ..
*
* Purpose
* =======
*
* ZCHKLQ tests ZGELQF, ZUNGLQ and CUNMLQ.
*
* Arguments
* =========
*
* DOTYPE (input) LOGICAL array, dimension (NTYPES)
* The matrix types to be used for testing. Matrices of type j
* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*
* NM (input) INTEGER
* The number of values of M contained in the vector MVAL.
*
* MVAL (input) INTEGER array, dimension (NM)
* The values of the matrix row dimension M.
*
* NN (input) INTEGER
* The number of values of N contained in the vector NVAL.
*
* NVAL (input) INTEGER array, dimension (NN)
* The values of the matrix column dimension N.
*
* NNB (input) INTEGER
* The number of values of NB and NX contained in the
* vectors NBVAL and NXVAL. The blocking parameters are used
* in pairs (NB,NX).
*
* NBVAL (input) INTEGER array, dimension (NNB)
* The values of the blocksize NB.
*
* NXVAL (input) INTEGER array, dimension (NNB)
* The values of the crossover point NX.
*
* NRHS (input) INTEGER
* The number of right hand side vectors to be generated for
* each linear system.
*
* THRESH (input) DOUBLE PRECISION
* The threshold value for the test ratios. A result is
* included in the output file if RESULT >= THRESH. To have
* every test ratio printed, use THRESH = 0.
*
* TSTERR (input) LOGICAL
* Flag that indicates whether error exits are to be tested.
*
* NMAX (input) INTEGER
* The maximum value permitted for M or N, used in dimensioning
* the work arrays.
*
* A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
*
* AF (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
*
* AQ (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
*
* AL (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
*
* AC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
*
* B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)
*
* X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)
*
* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)
*
* TAU (workspace) COMPLEX*16 array, dimension (NMAX)
*
* WORK (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX)
*
* NOUT (input) INTEGER
* The unit number for output.
*
* =====================================================================
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 7 )
INTEGER NTYPES
PARAMETER ( NTYPES = 8 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
* ..
* .. Local Scalars ..
CHARACTER DIST, TYPE
CHARACTER*3 PATH
INTEGER I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA,
$ LWORK, M, MINMN, MODE, N, NB, NERRS, NFAIL, NK,
$ NRUN, NT, NX
DOUBLE PRECISION ANORM, CNDNUM
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASUM, XLAENV, ZERRLQ, ZGELQS,
$ ZGET02, ZLACPY, ZLARHS, ZLATB4, ZLATMS, ZLQT01,
$ ZLQT02, ZLQT03
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Zomplex precision'
PATH( 2: 3 ) = 'LQ'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL ZERRLQ( PATH, NOUT )
INFOT = 0
CALL XLAENV( 2, 2 )
*
LDA = NMAX
LWORK = NMAX*MAX( NMAX, NRHS )
*
* Do for each value of M in MVAL.
*
DO 70 IM = 1, NM
M = MVAL( IM )
*
* Do for each value of N in NVAL.
*
DO 60 IN = 1, NN
N = NVAL( IN )
MINMN = MIN( M, N )
DO 50 IMAT = 1, NTYPES
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 50
*
* Set up parameters with ZLATB4 and generate a test matrix
* with ZLATMS.
*
CALL ZLATB4( PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
*
SRNAMT = 'ZLATMS'
CALL ZLATMS( M, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA,
$ WORK, INFO )
*
* Check error code from ZLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', M, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 50
END IF
*
* Set some values for K: the first value must be MINMN,
* corresponding to the call of ZLQT01; other values are
* used in the calls of ZLQT02, and must not exceed MINMN.
*
KVAL( 1 ) = MINMN
KVAL( 2 ) = 0
KVAL( 3 ) = 1
KVAL( 4 ) = MINMN / 2
IF( MINMN.EQ.0 ) THEN
NK = 1
ELSE IF( MINMN.EQ.1 ) THEN
NK = 2
ELSE IF( MINMN.LE.3 ) THEN
NK = 3
ELSE
NK = 4
END IF
*
* Do for each value of K in KVAL
*
DO 40 IK = 1, NK
K = KVAL( IK )
*
* Do for each pair of values (NB,NX) in NBVAL and NXVAL.
*
DO 30 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
NX = NXVAL( INB )
CALL XLAENV( 3, NX )
DO I = 1, NTESTS
RESULT( I ) = ZERO
END DO
NT = 2
IF( IK.EQ.1 ) THEN
*
* Test ZGELQF
*
CALL ZLQT01( M, N, A, AF, AQ, AL, LDA, TAU,
$ WORK, LWORK, RWORK, RESULT( 1 ) )
ELSE IF( M.LE.N ) THEN
*
* Test ZUNGLQ, using factorization
* returned by ZLQT01
*
CALL ZLQT02( M, N, K, A, AF, AQ, AL, LDA, TAU,
$ WORK, LWORK, RWORK, RESULT( 1 ) )
END IF
IF( M.GE.K ) THEN
*
* Test ZUNMLQ, using factorization returned
* by ZLQT01
*
CALL ZLQT03( M, N, K, AF, AC, AL, AQ, LDA, TAU,
$ WORK, LWORK, RWORK, RESULT( 3 ) )
NT = NT + 4
*
* If M>=N and K=N, call ZGELQS to solve a system
* with NRHS right hand sides and compute the
* residual.
*
IF( K.EQ.M .AND. INB.EQ.1 ) THEN
*
* Generate a solution and set the right
* hand side.
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( PATH, 'New', 'Full',
$ 'No transpose', M, N, 0, 0,
$ NRHS, A, LDA, XACT, LDA, B, LDA,
$ ISEED, INFO )
*
CALL ZLACPY( 'Full', M, NRHS, B, LDA, X,
$ LDA )
SRNAMT = 'ZGELQS'
CALL ZGELQS( M, N, NRHS, AF, LDA, TAU, X,
$ LDA, WORK, LWORK, INFO )
*
* Check error code from ZGELQS.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELQS', INFO, 0, ' ',
$ M, N, NRHS, -1, NB, IMAT,
$ NFAIL, NERRS, NOUT )
*
CALL ZGET02( 'No transpose', M, N, NRHS, A,
$ LDA, X, LDA, B, LDA, RWORK,
$ RESULT( 7 ) )
NT = NT + 1
END IF
END IF
*
* Print information about the tests that did not
* pass the threshold.
*
DO 20 I = 1, NT
IF( RESULT( I ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )M, N, K, NB, NX,
$ IMAT, I, RESULT( I )
NFAIL = NFAIL + 1
END IF
20 CONTINUE
NRUN = NRUN + NT
30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
*
* Print a summary of the results.
*
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' M=', I5, ', N=', I5, ', K=', I5, ', NB=', I4, ', NX=',
$ I5, ', type ', I2, ', test(', I2, ')=', G12.5 )
RETURN
*
* End of ZCHKLQ
*
END
|