1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
|
*> \brief \b ZCHKAA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM ZCHKAA
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZCHKAA is the main test program for the COMPLEX*16 linear equation
*> routines.
*>
*> The program must be driven by a short data file. The first 15 records
*> (not including the first comment line) specify problem dimensions
*> and program options using list-directed input. The remaining lines
*> specify the LAPACK test paths and the number of matrix types to use
*> in testing. An annotated example of a data file can be obtained by
*> deleting the first 3 characters from the following 40 lines:
*> Data file for testing COMPLEX*16 LAPACK linear equation routines
*> 7 Number of values of M
*> 0 1 2 3 5 10 16 Values of M (row dimension)
*> 7 Number of values of N
*> 0 1 2 3 5 10 16 Values of N (column dimension)
*> 1 Number of values of NRHS
*> 2 Values of NRHS (number of right hand sides)
*> 5 Number of values of NB
*> 1 3 3 3 20 Values of NB (the blocksize)
*> 1 0 5 9 1 Values of NX (crossover point)
*> 3 Number of values of RANK
*> 30 50 90 Values of rank (as a % of N)
*> 30.0 Threshold value of test ratio
*> T Put T to test the LAPACK routines
*> T Put T to test the driver routines
*> T Put T to test the error exits
*> ZGE 11 List types on next line if 0 < NTYPES < 11
*> ZGB 8 List types on next line if 0 < NTYPES < 8
*> ZGT 12 List types on next line if 0 < NTYPES < 12
*> ZPO 9 List types on next line if 0 < NTYPES < 9
*> ZPS 9 List types on next line if 0 < NTYPES < 9
*> ZPP 9 List types on next line if 0 < NTYPES < 9
*> ZPB 8 List types on next line if 0 < NTYPES < 8
*> ZPT 12 List types on next line if 0 < NTYPES < 12
*> ZHE 10 List types on next line if 0 < NTYPES < 10
*> ZHP 10 List types on next line if 0 < NTYPES < 10
*> ZSY 11 List types on next line if 0 < NTYPES < 11
*> ZSR 11 List types on next line if 0 < NTYPES < 11
*> ZSP 11 List types on next line if 0 < NTYPES < 11
*> ZTR 18 List types on next line if 0 < NTYPES < 18
*> ZTP 18 List types on next line if 0 < NTYPES < 18
*> ZTB 17 List types on next line if 0 < NTYPES < 17
*> ZQR 8 List types on next line if 0 < NTYPES < 8
*> ZRQ 8 List types on next line if 0 < NTYPES < 8
*> ZLQ 8 List types on next line if 0 < NTYPES < 8
*> ZQL 8 List types on next line if 0 < NTYPES < 8
*> ZQP 6 List types on next line if 0 < NTYPES < 6
*> ZTZ 3 List types on next line if 0 < NTYPES < 3
*> ZLS 6 List types on next line if 0 < NTYPES < 6
*> ZEQ
*> \endverbatim
*
* Parameters:
* ==========
*
*> \verbatim
*> NMAX INTEGER
*> The maximum allowable value for M and N.
*>
*> MAXIN INTEGER
*> The number of different values that can be used for each of
*> M, N, NRHS, NB, NX and RANK
*>
*> MAXRHS INTEGER
*> The maximum number of right hand sides
*>
*> MATMAX INTEGER
*> The maximum number of matrix types to use for testing
*>
*> NIN INTEGER
*> The unit number for input
*>
*> NOUT INTEGER
*> The unit number for output
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
* =====================================================================
PROGRAM ZCHKAA
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 132 )
INTEGER MAXIN
PARAMETER ( MAXIN = 12 )
INTEGER MAXRHS
PARAMETER ( MAXRHS = 16 )
INTEGER MATMAX
PARAMETER ( MATMAX = 30 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER KDMAX
PARAMETER ( KDMAX = NMAX+( NMAX+1 ) / 4 )
* ..
* .. Local Scalars ..
LOGICAL FATAL, TSTCHK, TSTDRV, TSTERR
CHARACTER C1
CHARACTER*2 C2
CHARACTER*3 PATH
CHARACTER*10 INTSTR
CHARACTER*72 ALINE
INTEGER I, IC, J, K, LA, LAFAC, LDA, NB, NM, NMATS, NN,
$ NNB, NNB2, NNS, NRHS, NTYPES, NRANK,
$ VERS_MAJOR, VERS_MINOR, VERS_PATCH
DOUBLE PRECISION EPS, S1, S2, THREQ, THRESH
* ..
* .. Local Arrays ..
LOGICAL DOTYPE( MATMAX )
INTEGER IWORK( 25*NMAX ), MVAL( MAXIN ),
$ NBVAL( MAXIN ), NBVAL2( MAXIN ),
$ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
$ RANKVAL( MAXIN ), PIV( NMAX )
DOUBLE PRECISION RWORK( 150*NMAX+2*MAXRHS ), S( 2*NMAX )
COMPLEX*16 A( ( KDMAX+1 )*NMAX, 7 ), B( NMAX*MAXRHS, 4 ),
$ WORK( NMAX, NMAX+MAXRHS+10 )
* ..
* .. External Functions ..
LOGICAL LSAME, LSAMEN
DOUBLE PRECISION DLAMCH, DSECND
EXTERNAL LSAME, LSAMEN, DLAMCH, DSECND
* ..
* .. External Subroutines ..
EXTERNAL ALAREQ, ZCHKEQ, ZCHKGB, ZCHKGE, ZCHKGT, ZCHKHE,
$ ZCHKHP, ZCHKLQ, ZCHKPB, ZCHKPO, ZCHKPS, ZCHKPP,
$ ZCHKPT, ZCHKQ3, ZCHKQL, ZCHKQP, ZCHKQR, ZCHKRQ,
$ ZCHKSP, ZCHKSY, CCHKSY_ROOK, ZCHKTB, ZCHKTP,
$ ZCHKTR, ZCHKTZ, ZDRVGB, ZDRVGE, ZDRVGT, ZDRVHE,
$ ZDRVHP, ZDRVLS, ZDRVPB, ZDRVPO, ZDRVPP, ZDRVPT,
$ ZDRVSP, ZDRVSY, ILAVER
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Arrays in Common ..
INTEGER IPARMS( 100 )
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
COMMON / CLAENV / IPARMS
* ..
* .. Data statements ..
DATA THREQ / 2.0D0 / , INTSTR / '0123456789' /
* ..
* .. Executable Statements ..
*
S1 = DSECND( )
LDA = NMAX
FATAL = .FALSE.
*
* Read a dummy line.
*
READ( NIN, FMT = * )
*
* Report values of parameters.
*
CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
WRITE( NOUT, FMT = 9994 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
*
* Read the values of M
*
READ( NIN, FMT = * )NM
IF( NM.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )' NM ', NM, 1
NM = 0
FATAL = .TRUE.
ELSE IF( NM.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )' NM ', NM, MAXIN
NM = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( MVAL( I ), I = 1, NM )
DO 10 I = 1, NM
IF( MVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' M ', MVAL( I ), 0
FATAL = .TRUE.
ELSE IF( MVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9995 )' M ', MVAL( I ), NMAX
FATAL = .TRUE.
END IF
10 CONTINUE
IF( NM.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'M ', ( MVAL( I ), I = 1, NM )
*
* Read the values of N
*
READ( NIN, FMT = * )NN
IF( NN.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )' NN ', NN, 1
NN = 0
FATAL = .TRUE.
ELSE IF( NN.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )' NN ', NN, MAXIN
NN = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
DO 20 I = 1, NN
IF( NVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' N ', NVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9995 )' N ', NVAL( I ), NMAX
FATAL = .TRUE.
END IF
20 CONTINUE
IF( NN.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'N ', ( NVAL( I ), I = 1, NN )
*
* Read the values of NRHS
*
READ( NIN, FMT = * )NNS
IF( NNS.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )' NNS', NNS, 1
NNS = 0
FATAL = .TRUE.
ELSE IF( NNS.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )' NNS', NNS, MAXIN
NNS = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( NSVAL( I ), I = 1, NNS )
DO 30 I = 1, NNS
IF( NSVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )'NRHS', NSVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NSVAL( I ).GT.MAXRHS ) THEN
WRITE( NOUT, FMT = 9995 )'NRHS', NSVAL( I ), MAXRHS
FATAL = .TRUE.
END IF
30 CONTINUE
IF( NNS.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'NRHS', ( NSVAL( I ), I = 1, NNS )
*
* Read the values of NB
*
READ( NIN, FMT = * )NNB
IF( NNB.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )'NNB ', NNB, 1
NNB = 0
FATAL = .TRUE.
ELSE IF( NNB.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )'NNB ', NNB, MAXIN
NNB = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( NBVAL( I ), I = 1, NNB )
DO 40 I = 1, NNB
IF( NBVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' NB ', NBVAL( I ), 0
FATAL = .TRUE.
END IF
40 CONTINUE
IF( NNB.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'NB ', ( NBVAL( I ), I = 1, NNB )
*
* Set NBVAL2 to be the set of unique values of NB
*
NNB2 = 0
DO 60 I = 1, NNB
NB = NBVAL( I )
DO 50 J = 1, NNB2
IF( NB.EQ.NBVAL2( J ) )
$ GO TO 60
50 CONTINUE
NNB2 = NNB2 + 1
NBVAL2( NNB2 ) = NB
60 CONTINUE
*
* Read the values of NX
*
READ( NIN, FMT = * )( NXVAL( I ), I = 1, NNB )
DO 70 I = 1, NNB
IF( NXVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' NX ', NXVAL( I ), 0
FATAL = .TRUE.
END IF
70 CONTINUE
IF( NNB.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'NX ', ( NXVAL( I ), I = 1, NNB )
*
* Read the values of RANKVAL
*
READ( NIN, FMT = * )NRANK
IF( NN.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )' NRANK ', NRANK, 1
NRANK = 0
FATAL = .TRUE.
ELSE IF( NN.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )' NRANK ', NRANK, MAXIN
NRANK = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( RANKVAL( I ), I = 1, NRANK )
DO I = 1, NRANK
IF( RANKVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' RANK ', RANKVAL( I ), 0
FATAL = .TRUE.
ELSE IF( RANKVAL( I ).GT.100 ) THEN
WRITE( NOUT, FMT = 9995 )' RANK ', RANKVAL( I ), 100
FATAL = .TRUE.
END IF
END DO
IF( NRANK.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'RANK % OF N',
$ ( RANKVAL( I ), I = 1, NRANK )
*
* Read the threshold value for the test ratios.
*
READ( NIN, FMT = * )THRESH
WRITE( NOUT, FMT = 9992 )THRESH
*
* Read the flag that indicates whether to test the LAPACK routines.
*
READ( NIN, FMT = * )TSTCHK
*
* Read the flag that indicates whether to test the driver routines.
*
READ( NIN, FMT = * )TSTDRV
*
* Read the flag that indicates whether to test the error exits.
*
READ( NIN, FMT = * )TSTERR
*
IF( FATAL ) THEN
WRITE( NOUT, FMT = 9999 )
STOP
END IF
*
* Calculate and print the machine dependent constants.
*
EPS = DLAMCH( 'Underflow threshold' )
WRITE( NOUT, FMT = 9991 )'underflow', EPS
EPS = DLAMCH( 'Overflow threshold' )
WRITE( NOUT, FMT = 9991 )'overflow ', EPS
EPS = DLAMCH( 'Epsilon' )
WRITE( NOUT, FMT = 9991 )'precision', EPS
WRITE( NOUT, FMT = * )
NRHS = NSVAL( 1 )
*
80 CONTINUE
*
* Read a test path and the number of matrix types to use.
*
READ( NIN, FMT = '(A72)', END = 140 )ALINE
PATH = ALINE( 1: 3 )
NMATS = MATMAX
I = 3
90 CONTINUE
I = I + 1
IF( I.GT.72 )
$ GO TO 130
IF( ALINE( I: I ).EQ.' ' )
$ GO TO 90
NMATS = 0
100 CONTINUE
C1 = ALINE( I: I )
DO 110 K = 1, 10
IF( C1.EQ.INTSTR( K: K ) ) THEN
IC = K - 1
GO TO 120
END IF
110 CONTINUE
GO TO 130
120 CONTINUE
NMATS = NMATS*10 + IC
I = I + 1
IF( I.GT.72 )
$ GO TO 130
GO TO 100
130 CONTINUE
C1 = PATH( 1: 1 )
C2 = PATH( 2: 3 )
*
* Check first character for correct precision.
*
IF( .NOT.LSAME( C1, 'Zomplex precision' ) ) THEN
WRITE( NOUT, FMT = 9990 )PATH
*
ELSE IF( NMATS.LE.0 ) THEN
*
* Check for a positive number of tests requested.
*
WRITE( NOUT, FMT = 9989 )PATH
*
ELSE IF( LSAMEN( 2, C2, 'GE' ) ) THEN
*
* GE: general matrices
*
NTYPES = 11
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKGE( DOTYPE, NM, MVAL, NN, NVAL, NNB2, NBVAL2, NNS,
$ NSVAL, THRESH, TSTERR, LDA, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK,
$ RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN
*
* GB: general banded matrices
*
LA = ( 2*KDMAX+1 )*NMAX
LAFAC = ( 3*KDMAX+1 )*NMAX
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB2, NBVAL2, NNS,
$ NSVAL, THRESH, TSTERR, A( 1, 1 ), LA,
$ A( 1, 3 ), LAFAC, B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR,
$ A( 1, 1 ), LA, A( 1, 3 ), LAFAC, A( 1, 6 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S,
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'GT' ) ) THEN
*
* GT: general tridiagonal matrices
*
NTYPES = 12
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PO' ) ) THEN
*
* PO: positive definite matrices
*
NTYPES = 9
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKPO( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVPO( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK,
$ RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PS' ) ) THEN
*
* PS: positive semi-definite matrices
*
NTYPES = 9
*
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKPS( DOTYPE, NN, NVAL, NNB2, NBVAL2, NRANK,
$ RANKVAL, THRESH, TSTERR, LDA, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), PIV, WORK, RWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN
*
* PP: positive definite packed matrices
*
NTYPES = 9
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKPP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVPP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK,
$ RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
*
* PB: positive definite banded matrices
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKPB( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK,
$ RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
*
* PT: positive definite tridiagonal matrices
*
NTYPES = 12
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ A( 1, 1 ), S, A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR,
$ A( 1, 1 ), S, A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'HE' ) ) THEN
*
* HE: Hermitian indefinite matrices
*
NTYPES = 10
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKHE( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'HP' ) ) THEN
*
* HP: Hermitian indefinite packed matrices
*
NTYPES = 10
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKHP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK,
$ IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVHP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'SY' ) ) THEN
*
* SY: symmetric indefinite matrices,
* with partial (Bunch-Kaufman) pivoting algorithm
*
NTYPES = 11
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKSY( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVSY( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'SR' ) ) THEN
*
* SR: symmetric indefinite matrices with Rook pivoting,
* with rook (bounded Bunch-Kaufman) pivoting algorithm
*
NTYPES = 11
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKSY_ROOK(DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
* Test for drivers has not been implemented yet.
*
WRITE( NOUT, FMT = 9988 )PATH
*
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
*
* SP: symmetric indefinite packed matrices,
* with partial (Bunch-Kaufman) pivoting algorithm
*
NTYPES = 11
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKSP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK,
$ IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL ZDRVSP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'TR' ) ) THEN
*
* TR: triangular matrices
*
NTYPES = 18
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKTR( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'TP' ) ) THEN
*
* TP: triangular packed matrices
*
NTYPES = 18
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKTP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ LDA, A( 1, 1 ), A( 1, 2 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN
*
* TB: triangular banded matrices
*
NTYPES = 17
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKTB( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ LDA, A( 1, 1 ), A( 1, 2 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'QR' ) ) THEN
*
* QR: QR factorization
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKQR( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'LQ' ) ) THEN
*
* LQ: LQ factorization
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ),
$ WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'QL' ) ) THEN
*
* QL: QL factorization
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKQL( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ),
$ WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'RQ' ) ) THEN
*
* RQ: RQ factorization
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKRQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'EQ' ) ) THEN
*
* EQ: Equilibration routines for general and positive definite
* matrices (THREQ should be between 2 and 10)
*
IF( TSTCHK ) THEN
CALL ZCHKEQ( THREQ, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'TZ' ) ) THEN
*
* TZ: Trapezoidal matrix
*
NTYPES = 3
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKTZ( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), S( 1 ),
$ B( 1, 1 ), WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'QP' ) ) THEN
*
* QP: QR factorization with pivoting
*
NTYPES = 6
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL ZCHKQP( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), S( 1 ),
$ B( 1, 1 ), WORK, RWORK, IWORK, NOUT )
CALL ZCHKQ3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ THRESH, A( 1, 1 ), A( 1, 2 ), S( 1 ),
$ B( 1, 1 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'LS' ) ) THEN
*
* LS: Least squares drivers
*
NTYPES = 6
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTDRV ) THEN
CALL ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ NBVAL, NXVAL, THRESH, TSTERR, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ S( 1 ), S( NMAX+1 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE
*
WRITE( NOUT, FMT = 9990 )PATH
END IF
*
* Go back to get another input line.
*
GO TO 80
*
* Branch to this line when the last record is read.
*
140 CONTINUE
CLOSE ( NIN )
S2 = DSECND( )
WRITE( NOUT, FMT = 9998 )
WRITE( NOUT, FMT = 9997 )S2 - S1
*
9999 FORMAT( / ' Execution not attempted due to input errors' )
9998 FORMAT( / ' End of tests' )
9997 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
9996 FORMAT( ' Invalid input value: ', A4, '=', I6, '; must be >=',
$ I6 )
9995 FORMAT( ' Invalid input value: ', A4, '=', I6, '; must be <=',
$ I6 )
9994 FORMAT( ' Tests of the COMPLEX*16 LAPACK routines ',
$ / ' LAPACK VERSION ', I1, '.', I1, '.', I1,
$ / / ' The following parameter values will be used:' )
9993 FORMAT( 4X, A4, ': ', 10I6, / 11X, 10I6 )
9992 FORMAT( / ' Routines pass computational tests if test ratio is ',
$ 'less than', F8.2, / )
9991 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 )
9990 FORMAT( / 1X, A3, ': Unrecognized path name' )
9989 FORMAT( / 1X, A3, ' routines were not tested' )
9988 FORMAT( / 1X, A3, ' driver routines were not tested' )
*
* End of ZCHKAA
*
END
|