summaryrefslogtreecommitdiff
path: root/TESTING/LIN/stplqt.f
blob: adbbfe8bdc279ad60cc7c209f8bffabfbfce5c5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
*  Definition:
*  ===========
*
*       SUBROUTINE STPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK,
*                          INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER   INFO, LDA, LDB, LDT, N, M, L, MB
*       ..
*       .. Array Arguments ..
*       REAL      A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> STPLQT computes a blocked LQ factorization of a real 
*> "triangular-pentagonal" matrix C, which is composed of a 
*> triangular block A and pentagonal block B, using the compact 
*> WY representation for Q.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix B, and the order of the
*>          triangular matrix A.  
*>          M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix B.
*>          N >= 0.
*> \endverbatim
*>
*> \param[in] L
*> \verbatim
*>          L is INTEGER
*>          The number of rows of the lower trapezoidal part of B.
*>          MIN(M,N) >= L >= 0.  See Further Details.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*>          MB is INTEGER
*>          The block size to be used in the blocked QR.  M >= MB >= 1.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the lower triangular N-by-N matrix A.
*>          On exit, the elements on and below the diagonal of the array
*>          contain the lower triangular matrix L.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB,N)
*>          On entry, the pentagonal M-by-N matrix B.  The first N-L columns 
*>          are rectangular, and the last L columns are lower trapezoidal.
*>          On exit, B contains the pentagonal matrix V.  See Further Details.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*>          T is REAL array, dimension (LDT,N)
*>          The lower triangular block reflectors stored in compact form
*>          as a sequence of upper triangular blocks.  See Further Details.
*> \endverbatim
*>          
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T.  LDT >= MB.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MB*M)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2013
*
*> \ingroup doubleOTHERcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The input matrix C is a M-by-(M+N) matrix  
*>
*>               C = [ A ] [ B ]
*>                           
*>
*>  where A is an lower triangular N-by-N matrix, and B is M-by-N pentagonal
*>  matrix consisting of a M-by-(N-L) rectangular matrix B1 on left of a M-by-L
*>  upper trapezoidal matrix B2:
*>          [ B ] = [ B1 ] [ B2 ] 
*>                   [ B1 ]  <- M-by-(N-L) rectangular
*>                   [ B2 ]  <-     M-by-L upper trapezoidal.
*>
*>  The lower trapezoidal matrix B2 consists of the first L columns of a
*>  N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N).  If L=0, 
*>  B is rectangular M-by-N; if M=L=N, B is lower triangular.  
*>
*>  The matrix W stores the elementary reflectors H(i) in the i-th row
*>  above the diagonal (of A) in the M-by-(M+N) input matrix C
*>            [ C ] = [ A ] [ B ] 
*>                   [ A ]  <- lower triangular N-by-N
*>                   [ B ]  <- M-by-N pentagonal
*>
*>  so that W can be represented as
*>            [ W ] = [ I ] [ V ] 
*>                   [ I ]  <- identity, N-by-N
*>                   [ V ]  <- M-by-N, same form as B.
*>
*>  Thus, all of information needed for W is contained on exit in B, which
*>  we call V above.  Note that V has the same form as B; that is, 
*>            [ V ] = [ V1 ] [ V2 ] 
*>                   [ V1 ] <- M-by-(N-L) rectangular
*>                   [ V2 ] <-     M-by-L lower trapezoidal.
*>
*>  The rows of V represent the vectors which define the H(i)'s.  
*>
*>  The number of blocks is B = ceiling(M/MB), where each
*>  block is of order MB except for the last block, which is of order 
*>  IB = M - (M-1)*MB.  For each of the B blocks, a upper triangular block
*>  reflector factor is computed: T1, T2, ..., TB.  The MB-by-MB (and IB-by-IB 
*>  for the last block) T's are stored in the MB-by-N matrix T as
*>
*>               T = [T1 T2 ... TB].
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE STPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK,
     $                   INFO )
*
*  -- LAPACK computational routine (version 3.5.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2013
*
*     .. Scalar Arguments ..
      INTEGER INFO, LDA, LDB, LDT, N, M, L, MB
*     ..
*     .. Array Arguments ..
      REAL A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
*     ..
*
* =====================================================================
*
*     ..
*     .. Local Scalars ..
      INTEGER    I, IB, LB, NB, IINFO
*     ..
*     .. External Subroutines ..
      EXTERNAL   STPLQT2, STPRFB, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN
         INFO = -3
      ELSE IF( MB.LT.1 .OR. (MB.GT.M .AND. M.GT.0)) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
         INFO = -8
      ELSE IF( LDT.LT.MB ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'STPLQT', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
*
      DO I = 1, M, MB
*     
*     Compute the QR factorization of the current block
*
         IB = MIN( M-I+1, MB )
         NB = MIN( N-L+I+IB-1, N )
         IF( I.GE.L ) THEN
            LB = 0
         ELSE
            LB = NB-N+L-I+1
         END IF
*
         CALL STPLQT2( IB, NB, LB, A(I,I), LDA, B( I, 1 ), LDB, 
     $                 T(1, I ), LDT, IINFO )
*
*     Update by applying H**T to B(I+IB:M,:) from the right
*
         IF( I+IB.LE.M ) THEN
            CALL STPRFB( 'R', 'N', 'F', 'R', M-I-IB+1, NB, IB, LB,
     $                    B( I, 1 ), LDB, T( 1, I ), LDT, 
     $                    A( I+IB, I ), LDA, B( I+IB, 1 ), LDB, 
     $                    WORK, M-I-IB+1)
         END IF
      END DO
      RETURN
*     
*     End of STPLQT
*
      END