1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
SUBROUTINE SRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
$ R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* Purpose
* =======
*
* SRQT02 tests SORGRQ, which generates an m-by-n matrix Q with
* orthonornmal rows that is defined as the product of k elementary
* reflectors.
*
* Given the RQ factorization of an m-by-n matrix A, SRQT02 generates
* the orthogonal matrix Q defined by the factorization of the last k
* rows of A; it compares R(m-k+1:m,n-m+1:n) with
* A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are
* orthonormal.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix Q to be generated. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix Q to be generated.
* N >= M >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines the
* matrix Q. M >= K >= 0.
*
* A (input) REAL array, dimension (LDA,N)
* The m-by-n matrix A which was factorized by SRQT01.
*
* AF (input) REAL array, dimension (LDA,N)
* Details of the RQ factorization of A, as returned by SGERQF.
* See SGERQF for further details.
*
* Q (workspace) REAL array, dimension (LDA,N)
*
* R (workspace) REAL array, dimension (LDA,M)
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*
* TAU (input) REAL array, dimension (M)
* The scalar factors of the elementary reflectors corresponding
* to the RQ factorization in AF.
*
* WORK (workspace) REAL array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) REAL array, dimension (M)
*
* RESULT (output) REAL array, dimension (2)
* The test ratios:
* RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
* RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
REAL ROGUE
PARAMETER ( ROGUE = -1.0E+10 )
* ..
* .. Local Scalars ..
INTEGER INFO
REAL ANORM, EPS, RESID
* ..
* .. External Functions ..
REAL SLAMCH, SLANGE, SLANSY
EXTERNAL SLAMCH, SLANGE, SLANSY
* ..
* .. External Subroutines ..
EXTERNAL SGEMM, SLACPY, SLASET, SORGRQ, SSYRK
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, REAL
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
*
* Copy the last k rows of the factorization to the array Q
*
CALL SLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
IF( K.LT.N )
$ CALL SLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
$ Q( M-K+1, 1 ), LDA )
IF( K.GT.1 )
$ CALL SLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
$ Q( M-K+2, N-K+1 ), LDA )
*
* Generate the last n rows of the matrix Q
*
SRNAMT = 'SORGRQ'
CALL SORGRQ( M, N, K, Q, LDA, TAU( M-K+1 ), WORK, LWORK, INFO )
*
* Copy R(m-k+1:m,n-m+1:n)
*
CALL SLASET( 'Full', K, M, ZERO, ZERO, R( M-K+1, N-M+1 ), LDA )
CALL SLACPY( 'Upper', K, K, AF( M-K+1, N-K+1 ), LDA,
$ R( M-K+1, N-K+1 ), LDA )
*
* Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)'
*
CALL SGEMM( 'No transpose', 'Transpose', K, M, N, -ONE,
$ A( M-K+1, 1 ), LDA, Q, LDA, ONE, R( M-K+1, N-M+1 ),
$ LDA )
*
* Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) .
*
ANORM = SLANGE( '1', K, N, A( M-K+1, 1 ), LDA, RWORK )
RESID = SLANGE( '1', K, M, R( M-K+1, N-M+1 ), LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q*Q'
*
CALL SLASET( 'Full', M, M, ZERO, ONE, R, LDA )
CALL SSYRK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, R,
$ LDA )
*
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
RESID = SLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
*
RETURN
*
* End of SRQT02
*
END
|