1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
*> \brief \b SPBT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER KD, LDA, LDAFAC, N
* REAL RESID
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SPBT01 reconstructs a symmetric positive definite band matrix A from
*> its L*L' or U'*U factorization and computes the residual
*> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*> norm( U'*U - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon, L' is the conjugate transpose of
*> L, and U' is the conjugate transpose of U.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of super-diagonals of the matrix A if UPLO = 'U',
*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The original symmetric band matrix A. If UPLO = 'U', the
*> upper triangular part of A is stored as a band matrix; if
*> UPLO = 'L', the lower triangular part of A is stored. The
*> columns of the appropriate triangle are stored in the columns
*> of A and the diagonals of the triangle are stored in the rows
*> of A. See SPBTRF for further details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER.
*> The leading dimension of the array A. LDA >= max(1,KD+1).
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is REAL array, dimension (LDAFAC,N)
*> The factored form of the matrix A. AFAC contains the factor
*> L or U from the L*L' or U'*U factorization in band storage
*> format, as computed by SPBTRF.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC.
*> LDAFAC >= max(1,KD+1).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
$ RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER KD, LDA, LDAFAC, N
REAL RESID
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
* =====================================================================
*
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K, KC, KLEN, ML, MU
REAL ANORM, EPS, T
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SDOT, SLAMCH, SLANSB
EXTERNAL LSAME, SDOT, SLAMCH, SLANSB
* ..
* .. External Subroutines ..
EXTERNAL SSCAL, SSYR, STRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANSB( '1', UPLO, N, KD, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute the product U'*U, overwriting U.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 10 K = N, 1, -1
KC = MAX( 1, KD+2-K )
KLEN = KD + 1 - KC
*
* Compute the (K,K) element of the result.
*
T = SDOT( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 )
AFAC( KD+1, K ) = T
*
* Compute the rest of column K.
*
IF( KLEN.GT.0 )
$ CALL STRMV( 'Upper', 'Transpose', 'Non-unit', KLEN,
$ AFAC( KD+1, K-KLEN ), LDAFAC-1,
$ AFAC( KC, K ), 1 )
*
10 CONTINUE
*
* UPLO = 'L': Compute the product L*L', overwriting L.
*
ELSE
DO 20 K = N, 1, -1
KLEN = MIN( KD, N-K )
*
* Add a multiple of column K of the factor L to each of
* columns K+1 through N.
*
IF( KLEN.GT.0 )
$ CALL SSYR( 'Lower', KLEN, ONE, AFAC( 2, K ), 1,
$ AFAC( 1, K+1 ), LDAFAC-1 )
*
* Scale column K by the diagonal element.
*
T = AFAC( 1, K )
CALL SSCAL( KLEN+1, T, AFAC( 1, K ), 1 )
*
20 CONTINUE
END IF
*
* Compute the difference L*L' - A or U'*U - A.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 40 J = 1, N
MU = MAX( 1, KD+2-J )
DO 30 I = MU, KD + 1
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
30 CONTINUE
40 CONTINUE
ELSE
DO 60 J = 1, N
ML = MIN( KD+1, N-J+1 )
DO 50 I = 1, ML
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
50 CONTINUE
60 CONTINUE
END IF
*
* Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
*
RESID = SLANSB( 'I', UPLO, N, KD, AFAC, LDAFAC, RWORK )
*
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
RETURN
*
* End of SPBT01
*
END
|