1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
*> \brief \b SGET01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
* RESID )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDAFAC, M, N
* REAL RESID
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGET01 reconstructs a matrix A from its L*U factorization and
*> computes the residual
*> norm(L*U - A) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The original M x N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] AFAC
*> \verbatim
*> AFAC is REAL array, dimension (LDAFAC,N)
*> The factored form of the matrix A. AFAC contains the factors
*> L and U from the L*U factorization as computed by SGETRF.
*> Overwritten with the reconstructed matrix, and then with the
*> difference L*U - A.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC. LDAFAC >= max(1,M).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from SGETRF.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> norm(L*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
$ RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDAFAC, M, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
* =====================================================================
*
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K
REAL ANORM, EPS, T
* ..
* .. External Functions ..
REAL SDOT, SLAMCH, SLANGE
EXTERNAL SDOT, SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SGEMV, SLASWP, SSCAL, STRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick exit if M = 0 or N = 0.
*
IF( M.LE.0 .OR. N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANGE( '1', M, N, A, LDA, RWORK )
*
* Compute the product L*U and overwrite AFAC with the result.
* A column at a time of the product is obtained, starting with
* column N.
*
DO 10 K = N, 1, -1
IF( K.GT.M ) THEN
CALL STRMV( 'Lower', 'No transpose', 'Unit', M, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
ELSE
*
* Compute elements (K+1:M,K)
*
T = AFAC( K, K )
IF( K+1.LE.M ) THEN
CALL SSCAL( M-K, T, AFAC( K+1, K ), 1 )
CALL SGEMV( 'No transpose', M-K, K-1, ONE,
$ AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1, ONE,
$ AFAC( K+1, K ), 1 )
END IF
*
* Compute the (K,K) element
*
AFAC( K, K ) = T + SDOT( K-1, AFAC( K, 1 ), LDAFAC,
$ AFAC( 1, K ), 1 )
*
* Compute elements (1:K-1,K)
*
CALL STRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
END IF
10 CONTINUE
CALL SLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 )
*
* Compute the difference L*U - A and store in AFAC.
*
DO 30 J = 1, N
DO 20 I = 1, M
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
20 CONTINUE
30 CONTINUE
*
* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
RESID = SLANGE( '1', M, N, AFAC, LDAFAC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of SGET01
*
END
|