1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
SUBROUTINE DLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), L( LDA, * ),
$ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* Purpose
* =======
*
* DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with
* orthonornmal rows that is defined as the product of k elementary
* reflectors.
*
* Given the LQ factorization of an m-by-n matrix A, DLQT02 generates
* the orthogonal matrix Q defined by the factorization of the first k
* rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
* checks that the rows of Q are orthonormal.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix Q to be generated. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix Q to be generated.
* N >= M >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines the
* matrix Q. M >= K >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The m-by-n matrix A which was factorized by DLQT01.
*
* AF (input) DOUBLE PRECISION array, dimension (LDA,N)
* Details of the LQ factorization of A, as returned by DGELQF.
* See DGELQF for further details.
*
* Q (workspace) DOUBLE PRECISION array, dimension (LDA,N)
*
* L (workspace) DOUBLE PRECISION array, dimension (LDA,M)
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*
* TAU (input) DOUBLE PRECISION array, dimension (M)
* The scalar factors of the elementary reflectors corresponding
* to the LQ factorization in AF.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (M)
*
* RESULT (output) DOUBLE PRECISION array, dimension (2)
* The test ratios:
* RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
* RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION ROGUE
PARAMETER ( ROGUE = -1.0D+10 )
* ..
* .. Local Scalars ..
INTEGER INFO
DOUBLE PRECISION ANORM, EPS, RESID
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, DLASET, DORGLQ, DSYRK
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'Epsilon' )
*
* Copy the first k rows of the factorization to the array Q
*
CALL DLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
CALL DLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
* Generate the first n columns of the matrix Q
*
SRNAMT = 'DORGLQ'
CALL DORGLQ( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
* Copy L(1:k,1:m)
*
CALL DLASET( 'Full', K, M, ZERO, ZERO, L, LDA )
CALL DLACPY( 'Lower', K, M, AF, LDA, L, LDA )
*
* Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)'
*
CALL DGEMM( 'No transpose', 'Transpose', K, M, N, -ONE, A, LDA, Q,
$ LDA, ONE, L, LDA )
*
* Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) .
*
ANORM = DLANGE( '1', K, N, A, LDA, RWORK )
RESID = DLANGE( '1', K, M, L, LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q*Q'
*
CALL DLASET( 'Full', M, M, ZERO, ONE, L, LDA )
CALL DSYRK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, L,
$ LDA )
*
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
RESID = DLANSY( '1', 'Upper', M, L, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
*
RETURN
*
* End of DLQT02
*
END
|