summaryrefslogtreecommitdiff
path: root/TESTING/LIN/dlavsp.f
blob: cafae166f9dd7abd0e67573cb89896070cd6d38e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
      SUBROUTINE DLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
     $                   INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  DLAVSP  performs one of the matrix-vector operations
*     x := A*x  or  x := A'*x,
*  where x is an N element vector and  A is one of the factors
*  from the block U*D*U' or L*D*L' factorization computed by DSPTRF.
*
*  If TRANS = 'N', multiplies by U  or U * D  (or L  or L * D)
*  If TRANS = 'T', multiplies by U' or D * U' (or L' or D * L' )
*  If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L' )
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the factor stored in A is upper or lower
*          triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  TRANS   (input) CHARACTER*1
*          Specifies the operation to be performed:
*          = 'N':  x := A*x
*          = 'T':  x := A'*x
*          = 'C':  x := A'*x
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the diagonal blocks are unit
*          matrices.  If the diagonal blocks are assumed to be unit,
*          then A = U or A = L, otherwise A = U*D or A = L*D.
*          = 'U':  Diagonal blocks are assumed to be unit matrices.
*          = 'N':  Diagonal blocks are assumed to be non-unit matrices.
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of vectors
*          x to be multiplied by A.  NRHS >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          The block diagonal matrix D and the multipliers used to
*          obtain the factor U or L, stored as a packed triangular
*          matrix as computed by DSPTRF.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices from DSPTRF.
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
*          On entry, B contains NRHS vectors of length N.
*          On exit, B is overwritten with the product A * B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -k, the k-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOUNIT
      INTEGER            J, K, KC, KCNEXT, KP
      DOUBLE PRECISION   D11, D12, D21, D22, T1, T2
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMV, DGER, DSCAL, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
     $         LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
     $          THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAVSP ', -INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
      NOUNIT = LSAME( DIAG, 'N' )
*------------------------------------------
*
*     Compute  B := A * B  (No transpose)
*
*------------------------------------------
      IF( LSAME( TRANS, 'N' ) ) THEN
*
*        Compute  B := U*B
*        where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Loop forward applying the transformations.
*
            K = 1
            KC = 1
   10       CONTINUE
            IF( K.GT.N )
     $         GO TO 30
*
*           1 x 1 pivot block
*
            IF( IPIV( K ).GT.0 ) THEN
*
*              Multiply by the diagonal element if forming U * D.
*
               IF( NOUNIT )
     $            CALL DSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
*
*              Multiply by P(K) * inv(U(K))  if K > 1.
*
               IF( K.GT.1 ) THEN
*
*                 Apply the transformation.
*
                  CALL DGER( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ), LDB,
     $                       B( 1, 1 ), LDB )
*
*                 Interchange if P(K) != I.
*
                  KP = IPIV( K )
                  IF( KP.NE.K )
     $               CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
               END IF
               KC = KC + K
               K = K + 1
            ELSE
*
*              2 x 2 pivot block
*
               KCNEXT = KC + K
*
*              Multiply by the diagonal block if forming U * D.
*
               IF( NOUNIT ) THEN
                  D11 = A( KCNEXT-1 )
                  D22 = A( KCNEXT+K )
                  D12 = A( KCNEXT+K-1 )
                  D21 = D12
                  DO 20 J = 1, NRHS
                     T1 = B( K, J )
                     T2 = B( K+1, J )
                     B( K, J ) = D11*T1 + D12*T2
                     B( K+1, J ) = D21*T1 + D22*T2
   20             CONTINUE
               END IF
*
*              Multiply by  P(K) * inv(U(K))  if K > 1.
*
               IF( K.GT.1 ) THEN
*
*                 Apply the transformations.
*
                  CALL DGER( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ), LDB,
     $                       B( 1, 1 ), LDB )
                  CALL DGER( K-1, NRHS, ONE, A( KCNEXT ), 1,
     $                       B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
*
*                 Interchange if P(K) != I.
*
                  KP = ABS( IPIV( K ) )
                  IF( KP.NE.K )
     $               CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
               END IF
               KC = KCNEXT + K + 1
               K = K + 2
            END IF
            GO TO 10
   30       CONTINUE
*
*        Compute  B := L*B
*        where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
*
         ELSE
*
*           Loop backward applying the transformations to B.
*
            K = N
            KC = N*( N+1 ) / 2 + 1
   40       CONTINUE
            IF( K.LT.1 )
     $         GO TO 60
            KC = KC - ( N-K+1 )
*
*           Test the pivot index.  If greater than zero, a 1 x 1
*           pivot was used, otherwise a 2 x 2 pivot was used.
*
            IF( IPIV( K ).GT.0 ) THEN
*
*              1 x 1 pivot block:
*
*              Multiply by the diagonal element if forming L * D.
*
               IF( NOUNIT )
     $            CALL DSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
*
*              Multiply by  P(K) * inv(L(K))  if K < N.
*
               IF( K.NE.N ) THEN
                  KP = IPIV( K )
*
*                 Apply the transformation.
*
                  CALL DGER( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
     $                       LDB, B( K+1, 1 ), LDB )
*
*                 Interchange if a permutation was applied at the
*                 K-th step of the factorization.
*
                  IF( KP.NE.K )
     $               CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
               END IF
               K = K - 1
*
            ELSE
*
*              2 x 2 pivot block:
*
               KCNEXT = KC - ( N-K+2 )
*
*              Multiply by the diagonal block if forming L * D.
*
               IF( NOUNIT ) THEN
                  D11 = A( KCNEXT )
                  D22 = A( KC )
                  D21 = A( KCNEXT+1 )
                  D12 = D21
                  DO 50 J = 1, NRHS
                     T1 = B( K-1, J )
                     T2 = B( K, J )
                     B( K-1, J ) = D11*T1 + D12*T2
                     B( K, J ) = D21*T1 + D22*T2
   50             CONTINUE
               END IF
*
*              Multiply by  P(K) * inv(L(K))  if K < N.
*
               IF( K.NE.N ) THEN
*
*                 Apply the transformation.
*
                  CALL DGER( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
     $                       LDB, B( K+1, 1 ), LDB )
                  CALL DGER( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
     $                       B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
*
*                 Interchange if a permutation was applied at the
*                 K-th step of the factorization.
*
                  KP = ABS( IPIV( K ) )
                  IF( KP.NE.K )
     $               CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
               END IF
               KC = KCNEXT
               K = K - 2
            END IF
            GO TO 40
   60       CONTINUE
         END IF
*----------------------------------------
*
*     Compute  B := A' * B  (transpose)
*
*----------------------------------------
      ELSE
*
*        Form  B := U'*B
*        where U  = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
*        and   U' = inv(U'(1))*P(1)* ... *inv(U'(m))*P(m)
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Loop backward applying the transformations.
*
            K = N
            KC = N*( N+1 ) / 2 + 1
   70       CONTINUE
            IF( K.LT.1 )
     $         GO TO 90
            KC = KC - K
*
*           1 x 1 pivot block.
*
            IF( IPIV( K ).GT.0 ) THEN
               IF( K.GT.1 ) THEN
*
*                 Interchange if P(K) != I.
*
                  KP = IPIV( K )
                  IF( KP.NE.K )
     $               CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
*
*                 Apply the transformation
*
                  CALL DGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
     $                        A( KC ), 1, ONE, B( K, 1 ), LDB )
               END IF
               IF( NOUNIT )
     $            CALL DSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
               K = K - 1
*
*           2 x 2 pivot block.
*
            ELSE
               KCNEXT = KC - ( K-1 )
               IF( K.GT.2 ) THEN
*
*                 Interchange if P(K) != I.
*
                  KP = ABS( IPIV( K ) )
                  IF( KP.NE.K-1 )
     $               CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
     $                           LDB )
*
*                 Apply the transformations
*
                  CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
     $                        A( KC ), 1, ONE, B( K, 1 ), LDB )
                  CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
     $                        A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
               END IF
*
*              Multiply by the diagonal block if non-unit.
*
               IF( NOUNIT ) THEN
                  D11 = A( KC-1 )
                  D22 = A( KC+K-1 )
                  D12 = A( KC+K-2 )
                  D21 = D12
                  DO 80 J = 1, NRHS
                     T1 = B( K-1, J )
                     T2 = B( K, J )
                     B( K-1, J ) = D11*T1 + D12*T2
                     B( K, J ) = D21*T1 + D22*T2
   80             CONTINUE
               END IF
               KC = KCNEXT
               K = K - 2
            END IF
            GO TO 70
   90       CONTINUE
*
*        Form  B := L'*B
*        where L  = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
*        and   L' = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
*
         ELSE
*
*           Loop forward applying the L-transformations.
*
            K = 1
            KC = 1
  100       CONTINUE
            IF( K.GT.N )
     $         GO TO 120
*
*           1 x 1 pivot block
*
            IF( IPIV( K ).GT.0 ) THEN
               IF( K.LT.N ) THEN
*
*                 Interchange if P(K) != I.
*
                  KP = IPIV( K )
                  IF( KP.NE.K )
     $               CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
*
*                 Apply the transformation
*
                  CALL DGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
     $                        LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
               END IF
               IF( NOUNIT )
     $            CALL DSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
               KC = KC + N - K + 1
               K = K + 1
*
*           2 x 2 pivot block.
*
            ELSE
               KCNEXT = KC + N - K + 1
               IF( K.LT.N-1 ) THEN
*
*              Interchange if P(K) != I.
*
                  KP = ABS( IPIV( K ) )
                  IF( KP.NE.K+1 )
     $               CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
     $                           LDB )
*
*                 Apply the transformation
*
                  CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
     $                        B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
     $                        B( K+1, 1 ), LDB )
                  CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
     $                        B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
     $                        B( K, 1 ), LDB )
               END IF
*
*              Multiply by the diagonal block if non-unit.
*
               IF( NOUNIT ) THEN
                  D11 = A( KC )
                  D22 = A( KCNEXT )
                  D21 = A( KC+1 )
                  D12 = D21
                  DO 110 J = 1, NRHS
                     T1 = B( K, J )
                     T2 = B( K+1, J )
                     B( K, J ) = D11*T1 + D12*T2
                     B( K+1, J ) = D21*T1 + D22*T2
  110             CONTINUE
               END IF
               KC = KCNEXT + ( N-K )
               K = K + 2
            END IF
            GO TO 100
  120       CONTINUE
         END IF
*
      END IF
      RETURN
*
*     End of DLAVSP
*
      END