1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
*> \brief \b DGEQRS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGEQRS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), TAU( * ),
* $ WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Solve the least squares problem
*> min || A*X - B ||
*> using the QR factorization
*> A = Q*R
*> computed by DGEQRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. M >= N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> Details of the QR factorization of the original matrix A as
*> returned by DGEQRF.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= M.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION array, dimension (N)
*> Details of the orthogonal matrix Q.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On entry, the m-by-nrhs right hand side matrix B.
*> On exit, the n-by-nrhs solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= M.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK must be at least NRHS,
*> and should be at least NRHS*NB, where NB is the block size
*> for this environment.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DGEQRS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
$ INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. External Subroutines ..
EXTERNAL DORMQR, DTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 )
$ THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGEQRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 )
$ RETURN
*
* B := Q' * B
*
CALL DORMQR( 'Left', 'Transpose', M, NRHS, N, A, LDA, TAU, B, LDB,
$ WORK, LWORK, INFO )
*
* Solve R*X = B(1:n,:)
*
CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N, NRHS,
$ ONE, A, LDA, B, LDB )
*
RETURN
*
* End of DGEQRS
*
END
|