1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
SUBROUTINE DCHKQ3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ THRESH, A, COPYA, S, TAU, WORK, IWORK,
$ NOUT )
*
* -- LAPACK test routine (version 3.1.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* January 2007
*
* .. Scalar Arguments ..
INTEGER NM, NN, NNB, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
$ NXVAL( * )
DOUBLE PRECISION A( * ), COPYA( * ), S( * ),
$ TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DCHKQ3 tests DGEQP3.
*
* Arguments
* =========
*
* DOTYPE (input) LOGICAL array, dimension (NTYPES)
* The matrix types to be used for testing. Matrices of type j
* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*
* NM (input) INTEGER
* The number of values of M contained in the vector MVAL.
*
* MVAL (input) INTEGER array, dimension (NM)
* The values of the matrix row dimension M.
*
* NN (input) INTEGER
* The number of values of N contained in the vector NVAL.
*
* NVAL (input) INTEGER array, dimension (NN)
* The values of the matrix column dimension N.
*
* NNB (input) INTEGER
* The number of values of NB and NX contained in the
* vectors NBVAL and NXVAL. The blocking parameters are used
* in pairs (NB,NX).
*
* NBVAL (input) INTEGER array, dimension (NNB)
* The values of the blocksize NB.
*
* NXVAL (input) INTEGER array, dimension (NNB)
* The values of the crossover point NX.
*
* THRESH (input) DOUBLE PRECISION
* The threshold value for the test ratios. A result is
* included in the output file if RESULT >= THRESH. To have
* every test ratio printed, use THRESH = 0.
*
* A (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)
* where MMAX is the maximum value of M in MVAL and NMAX is the
* maximum value of N in NVAL.
*
* COPYA (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)
*
* S (workspace) DOUBLE PRECISION array, dimension
* (min(MMAX,NMAX))
*
* TAU (workspace) DOUBLE PRECISION array, dimension (MMAX)
*
* WORK (workspace) DOUBLE PRECISION array, dimension
* (MMAX*NMAX + 4*NMAX + MMAX)
*
* IWORK (workspace) INTEGER array, dimension (2*NMAX)
*
* NOUT (input) INTEGER
* The unit number for output.
*
* =====================================================================
*
* .. Parameters ..
INTEGER NTYPES
PARAMETER ( NTYPES = 6 )
INTEGER NTESTS
PARAMETER ( NTESTS = 3 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
* ..
* .. Local Scalars ..
CHARACTER*3 PATH
INTEGER I, IHIGH, ILOW, IM, IMODE, IN, INB, INFO,
$ ISTEP, K, LDA, LW, LWORK, M, MNMIN, MODE, N,
$ NB, NERRS, NFAIL, NRUN, NX
DOUBLE PRECISION EPS
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DQPT01, DQRT11, DQRT12
EXTERNAL DLAMCH, DQPT01, DQRT11, DQRT12
* ..
* .. External Subroutines ..
EXTERNAL ALAHD, ALASUM, DGEQP3, DLACPY, DLAORD, DLASET,
$ DLATMS, ICOPY, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, IOUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, IOUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'Q3'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
EPS = DLAMCH( 'Epsilon' )
INFOT = 0
*
DO 90 IM = 1, NM
*
* Do for each value of M in MVAL.
*
M = MVAL( IM )
LDA = MAX( 1, M )
*
DO 80 IN = 1, NN
*
* Do for each value of N in NVAL.
*
N = NVAL( IN )
MNMIN = MIN( M, N )
LWORK = MAX( 1, M*MAX( M, N )+4*MNMIN+MAX( M, N ),
$ M*N + 2*MNMIN + 4*N )
*
DO 70 IMODE = 1, NTYPES
IF( .NOT.DOTYPE( IMODE ) )
$ GO TO 70
*
* Do for each type of matrix
* 1: zero matrix
* 2: one small singular value
* 3: geometric distribution of singular values
* 4: first n/2 columns fixed
* 5: last n/2 columns fixed
* 6: every second column fixed
*
MODE = IMODE
IF( IMODE.GT.3 )
$ MODE = 1
*
* Generate test matrix of size m by n using
* singular value distribution indicated by `mode'.
*
DO 20 I = 1, N
IWORK( I ) = 0
20 CONTINUE
IF( IMODE.EQ.1 ) THEN
CALL DLASET( 'Full', M, N, ZERO, ZERO, COPYA, LDA )
DO 30 I = 1, MNMIN
S( I ) = ZERO
30 CONTINUE
ELSE
CALL DLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', S,
$ MODE, ONE / EPS, ONE, M, N, 'No packing',
$ COPYA, LDA, WORK, INFO )
IF( IMODE.GE.4 ) THEN
IF( IMODE.EQ.4 ) THEN
ILOW = 1
ISTEP = 1
IHIGH = MAX( 1, N / 2 )
ELSE IF( IMODE.EQ.5 ) THEN
ILOW = MAX( 1, N / 2 )
ISTEP = 1
IHIGH = N
ELSE IF( IMODE.EQ.6 ) THEN
ILOW = 1
ISTEP = 2
IHIGH = N
END IF
DO 40 I = ILOW, IHIGH, ISTEP
IWORK( I ) = 1
40 CONTINUE
END IF
CALL DLAORD( 'Decreasing', MNMIN, S, 1 )
END IF
*
DO 60 INB = 1, NNB
*
* Do for each pair of values (NB,NX) in NBVAL and NXVAL.
*
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
NX = NXVAL( INB )
CALL XLAENV( 3, NX )
*
* Get a working copy of COPYA into A and a copy of
* vector IWORK.
*
CALL DLACPY( 'All', M, N, COPYA, LDA, A, LDA )
CALL ICOPY( N, IWORK( 1 ), 1, IWORK( N+1 ), 1 )
*
* Compute the QR factorization with pivoting of A
*
LW = MAX( 1, 2*N+NB*( N+1 ) )
*
* Compute the QP3 factorization of A
*
SRNAMT = 'DGEQP3'
CALL DGEQP3( M, N, A, LDA, IWORK( N+1 ), TAU, WORK,
$ LW, INFO )
*
* Compute norm(svd(a) - svd(r))
*
RESULT( 1 ) = DQRT12( M, N, A, LDA, S, WORK,
$ LWORK )
*
* Compute norm( A*P - Q*R )
*
RESULT( 2 ) = DQPT01( M, N, MNMIN, COPYA, A, LDA, TAU,
$ IWORK( N+1 ), WORK, LWORK )
*
* Compute Q'*Q
*
RESULT( 3 ) = DQRT11( M, MNMIN, A, LDA, TAU, WORK,
$ LWORK )
*
* Print information about the tests that did not pass
* the threshold.
*
DO 50 K = 1, NTESTS
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )'DGEQP3', M, N, NB,
$ IMODE, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
50 CONTINUE
NRUN = NRUN + NTESTS
*
60 CONTINUE
70 CONTINUE
80 CONTINUE
90 CONTINUE
*
* Print a summary of the results.
*
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 1X, A, ' M =', I5, ', N =', I5, ', NB =', I4, ', type ',
$ I2, ', test ', I2, ', ratio =', G12.5 )
*
* End of DCHKQ3
*
END
|