summaryrefslogtreecommitdiff
path: root/TESTING/LIN/dchkq3.f
blob: 00815921e512b0cda8bbf2b3386f395e52fe05ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
      SUBROUTINE DCHKQ3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
     $                   THRESH, A, COPYA, S, TAU, WORK, IWORK,
     $                   NOUT )
*
*  -- LAPACK test routine (version 3.1.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     January 2007
*
*     .. Scalar Arguments ..
      INTEGER            NM, NN, NNB, NOUT
      DOUBLE PRECISION   THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
     $                   NXVAL( * )
      DOUBLE PRECISION   A( * ), COPYA( * ), S( * ),
     $                   TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DCHKQ3 tests DGEQP3.
*
*  Arguments
*  =========
*
*  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
*          The matrix types to be used for testing.  Matrices of type j
*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*
*  NM      (input) INTEGER
*          The number of values of M contained in the vector MVAL.
*
*  MVAL    (input) INTEGER array, dimension (NM)
*          The values of the matrix row dimension M.
*
*  NN      (input) INTEGER
*          The number of values of N contained in the vector NVAL.
*
*  NVAL    (input) INTEGER array, dimension (NN)
*          The values of the matrix column dimension N.
*
*  NNB     (input) INTEGER
*          The number of values of NB and NX contained in the
*          vectors NBVAL and NXVAL.  The blocking parameters are used
*          in pairs (NB,NX).
*
*  NBVAL   (input) INTEGER array, dimension (NNB)
*          The values of the blocksize NB.
*
*  NXVAL   (input) INTEGER array, dimension (NNB)
*          The values of the crossover point NX.
*
*  THRESH  (input) DOUBLE PRECISION
*          The threshold value for the test ratios.  A result is
*          included in the output file if RESULT >= THRESH.  To have
*          every test ratio printed, use THRESH = 0.
*
*  A       (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)
*          where MMAX is the maximum value of M in MVAL and NMAX is the
*          maximum value of N in NVAL.
*
*  COPYA   (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)
*
*  S       (workspace) DOUBLE PRECISION array, dimension
*                      (min(MMAX,NMAX))
*
*  TAU     (workspace) DOUBLE PRECISION array, dimension (MMAX)
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension
*                      (MMAX*NMAX + 4*NMAX + MMAX)
*
*  IWORK   (workspace) INTEGER array, dimension (2*NMAX)
*
*  NOUT    (input) INTEGER
*          The unit number for output.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NTYPES
      PARAMETER          ( NTYPES = 6 )
      INTEGER            NTESTS
      PARAMETER          ( NTESTS = 3 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      CHARACTER*3        PATH
      INTEGER            I, IHIGH, ILOW, IM, IMODE, IN, INB, INFO,
     $                   ISTEP, K, LDA, LW, LWORK, M, MNMIN, MODE, N,
     $                   NB, NERRS, NFAIL, NRUN, NX
      DOUBLE PRECISION   EPS
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
      DOUBLE PRECISION   RESULT( NTESTS )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DQPT01, DQRT11, DQRT12
      EXTERNAL           DLAMCH, DQPT01, DQRT11, DQRT12
*     ..
*     .. External Subroutines ..
      EXTERNAL           ALAHD, ALASUM, DGEQP3, DLACPY, DLAORD, DLASET,
     $                   DLATMS, ICOPY, XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Scalars in Common ..
      LOGICAL            LERR, OK
      CHARACTER*32       SRNAMT
      INTEGER            INFOT, IOUNIT
*     ..
*     .. Common blocks ..
      COMMON             / INFOC / INFOT, IOUNIT, OK, LERR
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEEDY / 1988, 1989, 1990, 1991 /
*     ..
*     .. Executable Statements ..
*
*     Initialize constants and the random number seed.
*
      PATH( 1: 1 ) = 'Double precision'
      PATH( 2: 3 ) = 'Q3'
      NRUN = 0
      NFAIL = 0
      NERRS = 0
      DO 10 I = 1, 4
         ISEED( I ) = ISEEDY( I )
   10 CONTINUE
      EPS = DLAMCH( 'Epsilon' )
      INFOT = 0
*
      DO 90 IM = 1, NM
*
*        Do for each value of M in MVAL.
*
         M = MVAL( IM )
         LDA = MAX( 1, M )
*
         DO 80 IN = 1, NN
*
*           Do for each value of N in NVAL.
*
            N = NVAL( IN )
            MNMIN = MIN( M, N )
            LWORK = MAX( 1, M*MAX( M, N )+4*MNMIN+MAX( M, N ),
     $                   M*N + 2*MNMIN + 4*N )
*
            DO 70 IMODE = 1, NTYPES
               IF( .NOT.DOTYPE( IMODE ) )
     $            GO TO 70
*
*              Do for each type of matrix
*                 1:  zero matrix
*                 2:  one small singular value
*                 3:  geometric distribution of singular values
*                 4:  first n/2 columns fixed
*                 5:  last n/2 columns fixed
*                 6:  every second column fixed
*
               MODE = IMODE
               IF( IMODE.GT.3 )
     $            MODE = 1
*
*              Generate test matrix of size m by n using
*              singular value distribution indicated by `mode'.
*
               DO 20 I = 1, N
                  IWORK( I ) = 0
   20          CONTINUE
               IF( IMODE.EQ.1 ) THEN
                  CALL DLASET( 'Full', M, N, ZERO, ZERO, COPYA, LDA )
                  DO 30 I = 1, MNMIN
                     S( I ) = ZERO
   30             CONTINUE
               ELSE
                  CALL DLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', S,
     $                         MODE, ONE / EPS, ONE, M, N, 'No packing',
     $                         COPYA, LDA, WORK, INFO )
                  IF( IMODE.GE.4 ) THEN
                     IF( IMODE.EQ.4 ) THEN
                        ILOW = 1
                        ISTEP = 1
                        IHIGH = MAX( 1, N / 2 )
                     ELSE IF( IMODE.EQ.5 ) THEN
                        ILOW = MAX( 1, N / 2 )
                        ISTEP = 1
                        IHIGH = N
                     ELSE IF( IMODE.EQ.6 ) THEN
                        ILOW = 1
                        ISTEP = 2
                        IHIGH = N
                     END IF
                     DO 40 I = ILOW, IHIGH, ISTEP
                        IWORK( I ) = 1
   40                CONTINUE
                  END IF
                  CALL DLAORD( 'Decreasing', MNMIN, S, 1 )
               END IF
*
               DO 60 INB = 1, NNB
*
*                 Do for each pair of values (NB,NX) in NBVAL and NXVAL.
*
                  NB = NBVAL( INB )
                  CALL XLAENV( 1, NB )
                  NX = NXVAL( INB )
                  CALL XLAENV( 3, NX )
*
*                 Get a working copy of COPYA into A and a copy of
*                 vector IWORK.
*
                  CALL DLACPY( 'All', M, N, COPYA, LDA, A, LDA )
                  CALL ICOPY( N, IWORK( 1 ), 1, IWORK( N+1 ), 1 )
*
*                 Compute the QR factorization with pivoting of A
*
                  LW = MAX( 1, 2*N+NB*( N+1 ) )
*
*                 Compute the QP3 factorization of A
*
                  SRNAMT = 'DGEQP3'
                  CALL DGEQP3( M, N, A, LDA, IWORK( N+1 ), TAU, WORK,
     $                         LW, INFO )
*
*                 Compute norm(svd(a) - svd(r))
*
                  RESULT( 1 ) = DQRT12( M, N, A, LDA, S, WORK,
     $                          LWORK )
*
*                 Compute norm( A*P - Q*R )
*
                  RESULT( 2 ) = DQPT01( M, N, MNMIN, COPYA, A, LDA, TAU,
     $                          IWORK( N+1 ), WORK, LWORK )
*
*                 Compute Q'*Q
*
                  RESULT( 3 ) = DQRT11( M, MNMIN, A, LDA, TAU, WORK,
     $                          LWORK )
*
*                 Print information about the tests that did not pass
*                 the threshold.
*
                  DO 50 K = 1, NTESTS
                     IF( RESULT( K ).GE.THRESH ) THEN
                        IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                     CALL ALAHD( NOUT, PATH )
                        WRITE( NOUT, FMT = 9999 )'DGEQP3', M, N, NB,
     $                     IMODE, K, RESULT( K )
                        NFAIL = NFAIL + 1
                     END IF
   50             CONTINUE
                  NRUN = NRUN + NTESTS
*
   60          CONTINUE
   70       CONTINUE
   80    CONTINUE
   90 CONTINUE
*
*     Print a summary of the results.
*
      CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
 9999 FORMAT( 1X, A, ' M =', I5, ', N =', I5, ', NB =', I4, ', type ',
     $      I2, ', test ', I2, ', ratio =', G12.5 )
*
*     End of DCHKQ3
*
      END