summaryrefslogtreecommitdiff
path: root/TESTING/LIN/cpst01.f
blob: 7bef530b826f5e46ffd50ddead1ee699c2a1a26a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
*> \brief \b CPST01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition
*  ==========
*
*       SUBROUTINE CPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
*                          PIV, RWORK, RESID, RANK )
* 
*       .. Scalar Arguments ..
*       REAL               RESID
*       INTEGER            LDA, LDAFAC, LDPERM, N, RANK
*       CHARACTER          UPLO
*       ..
*       .. Array Arguments ..
*       COMPLEX            A( LDA, * ), AFAC( LDAFAC, * ),
*      $                   PERM( LDPERM, * )
*       REAL               RWORK( * )
*       INTEGER            PIV( * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> CPST01 reconstructs an Hermitian positive semidefinite matrix A
*> from its L or U factors and the permutation matrix P and computes
*> the residual
*>    norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
*>    norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon, L' is the conjugate transpose of L,
*> and U' is the conjugate transpose of U.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The original Hermitian matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*>          AFAC is COMPLEX array, dimension (LDAFAC,N)
*>          The factor L or U from the L*L' or U'*U
*>          factorization of A.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*>          LDAFAC is INTEGER
*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[out] PERM
*> \verbatim
*>          PERM is COMPLEX array, dimension (LDPERM,N)
*>          Overwritten with the reconstructed matrix, and then with the
*>          difference P*L*L'*P' - A (or P*U'*U*P' - A)
*> \endverbatim
*>
*> \param[in] LDPERM
*> \verbatim
*>          LDPERM is INTEGER
*>          The leading dimension of the array PERM.
*>          LDAPERM >= max(1,N).
*> \endverbatim
*>
*> \param[in] PIV
*> \verbatim
*>          PIV is INTEGER array, dimension (N)
*>          PIV is such that the nonzero entries are
*>          P( PIV( K ), K ) = 1.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*>
*> \param[in] RANK
*> \verbatim
*>          RANK is INTEGER
*>          number of nonzero singular values of A.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
     $                   PIV, RWORK, RESID, RANK )
*
*  -- LAPACK test routine (version 3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      REAL               RESID
      INTEGER            LDA, LDAFAC, LDPERM, N, RANK
      CHARACTER          UPLO
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), AFAC( LDAFAC, * ),
     $                   PERM( LDPERM, * )
      REAL               RWORK( * )
      INTEGER            PIV( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      COMPLEX            TC
      REAL               ANORM, EPS, TR
      INTEGER            I, J, K
*     ..
*     .. External Functions ..
      COMPLEX            CDOTC
      REAL               CLANHE, SLAMCH
      LOGICAL            LSAME
      EXTERNAL           CDOTC, CLANHE, SLAMCH, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHER, CSCAL, CTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          AIMAG, CONJG, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Check the imaginary parts of the diagonal elements and return with
*     an error code if any are nonzero.
*
      DO 100 J = 1, N
         IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
            RESID = ONE / EPS
            RETURN
         END IF
  100 CONTINUE
*
*     Compute the product U'*U, overwriting U.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
         IF( RANK.LT.N ) THEN
            DO 120 J = RANK + 1, N
               DO 110 I = RANK + 1, J
                  AFAC( I, J ) = CZERO
  110          CONTINUE
  120       CONTINUE
         END IF
*
         DO 130 K = N, 1, -1
*
*           Compute the (K,K) element of the result.
*
            TR = CDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
            AFAC( K, K ) = TR
*
*           Compute the rest of column K.
*
            CALL CTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
     $                  LDAFAC, AFAC( 1, K ), 1 )
*
  130    CONTINUE
*
*     Compute the product L*L', overwriting L.
*
      ELSE
*
         IF( RANK.LT.N ) THEN
            DO 150 J = RANK + 1, N
               DO 140 I = J, N
                  AFAC( I, J ) = CZERO
  140          CONTINUE
  150       CONTINUE
         END IF
*
         DO 160 K = N, 1, -1
*           Add a multiple of column K of the factor L to each of
*           columns K+1 through N.
*
            IF( K+1.LE.N )
     $         CALL CHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
     $                    AFAC( K+1, K+1 ), LDAFAC )
*
*           Scale column K by the diagonal element.
*
            TC = AFAC( K, K )
            CALL CSCAL( N-K+1, TC, AFAC( K, K ), 1 )
  160    CONTINUE
*
      END IF
*
*        Form P*L*L'*P' or P*U'*U*P'
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
         DO 180 J = 1, N
            DO 170 I = 1, N
               IF( PIV( I ).LE.PIV( J ) ) THEN
                  IF( I.LE.J ) THEN
                     PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
                  ELSE
                     PERM( PIV( I ), PIV( J ) ) = CONJG( AFAC( J, I ) )
                  END IF
               END IF
  170       CONTINUE
  180    CONTINUE
*
*
      ELSE
*
         DO 200 J = 1, N
            DO 190 I = 1, N
               IF( PIV( I ).GE.PIV( J ) ) THEN
                  IF( I.GE.J ) THEN
                     PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
                  ELSE
                     PERM( PIV( I ), PIV( J ) ) = CONJG( AFAC( J, I ) )
                  END IF
               END IF
  190       CONTINUE
  200    CONTINUE
*
      END IF
*
*     Compute the difference  P*L*L'*P' - A (or P*U'*U*P' - A).
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 220 J = 1, N
            DO 210 I = 1, J - 1
               PERM( I, J ) = PERM( I, J ) - A( I, J )
  210       CONTINUE
            PERM( J, J ) = PERM( J, J ) - REAL( A( J, J ) )
  220    CONTINUE
      ELSE
         DO 240 J = 1, N
            PERM( J, J ) = PERM( J, J ) - REAL( A( J, J ) )
            DO 230 I = J + 1, N
               PERM( I, J ) = PERM( I, J ) - A( I, J )
  230       CONTINUE
  240    CONTINUE
      END IF
*
*     Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or
*     ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ).
*
      RESID = CLANHE( '1', UPLO, N, PERM, LDAFAC, RWORK )
*
      RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
      RETURN
*
*     End of CPST01
*
      END