summaryrefslogtreecommitdiff
path: root/TESTING/LIN/cpot03.f
blob: fe45e0d163100d63a966deff8732433652f18a06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
*> \brief \b CPOT03
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
*                          RWORK, RCOND, RESID )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDA, LDAINV, LDWORK, N
*       REAL               RCOND, RESID
*       ..
*       .. Array Arguments ..
*       REAL               RWORK( * )
*       COMPLEX            A( LDA, * ), AINV( LDAINV, * ),
*      $                   WORK( LDWORK, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CPOT03 computes the residual for a Hermitian matrix times its
*> inverse:
*>    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The original Hermitian matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in,out] AINV
*> \verbatim
*>          AINV is COMPLEX array, dimension (LDAINV,N)
*>          On entry, the inverse of the matrix A, stored as a Hermitian
*>          matrix in the same format as A.
*>          In this version, AINV is expanded into a full matrix and
*>          multiplied by A, so the opposing triangle of AINV will be
*>          changed; i.e., if the upper triangular part of AINV is
*>          stored, the lower triangular part will be used as work space.
*> \endverbatim
*>
*> \param[in] LDAINV
*> \verbatim
*>          LDAINV is INTEGER
*>          The leading dimension of the array AINV.  LDAINV >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (LDWORK,N)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*>          LDWORK is INTEGER
*>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is REAL
*>          The reciprocal of the condition number of A, computed as
*>          ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
     $                   RWORK, RCOND, RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDAINV, LDWORK, N
      REAL               RCOND, RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), AINV( LDAINV, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               AINVNM, ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE, CLANHE, SLAMCH
      EXTERNAL           LSAME, CLANGE, CLANHE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RCOND = ONE
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
      AINVNM = CLANHE( '1', UPLO, N, AINV, LDAINV, RWORK )
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
         RCOND = ZERO
         RESID = ONE / EPS
         RETURN
      END IF
      RCOND = ( ONE/ANORM ) / AINVNM
*
*     Expand AINV into a full matrix and call CHEMM to multiply
*     AINV on the left by A.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 20 J = 1, N
            DO 10 I = 1, J - 1
               AINV( J, I ) = CONJG( AINV( I, J ) )
   10       CONTINUE
   20    CONTINUE
      ELSE
         DO 40 J = 1, N
            DO 30 I = J + 1, N
               AINV( J, I ) = CONJG( AINV( I, J ) )
   30       CONTINUE
   40    CONTINUE
      END IF
      CALL CHEMM( 'Left', UPLO, N, N, -CONE, A, LDA, AINV, LDAINV,
     $            CZERO, WORK, LDWORK )
*
*     Add the identity matrix to WORK .
*
      DO 50 I = 1, N
         WORK( I, I ) = WORK( I, I ) + CONE
   50 CONTINUE
*
*     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
      RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
      RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
*
      RETURN
*
*     End of CPOT03
*
      END