1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
*> \brief \b CLQT02
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
* RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* REAL RESULT( * ), RWORK( * )
* COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ),
* $ Q( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLQT02 tests CUNGLQ, which generates an m-by-n matrix Q with
*> orthonornmal rows that is defined as the product of k elementary
*> reflectors.
*>
*> Given the LQ factorization of an m-by-n matrix A, CLQT02 generates
*> the orthogonal matrix Q defined by the factorization of the first k
*> rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
*> checks that the rows of Q are orthonormal.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix Q to be generated. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix Q to be generated.
*> N >= M >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines the
*> matrix Q. M >= K >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The m-by-n matrix A which was factorized by CLQT01.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*> AF is COMPLEX array, dimension (LDA,N)
*> Details of the LQ factorization of A, as returned by CGELQF.
*> See CGELQF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] L
*> \verbatim
*> L is COMPLEX array, dimension (LDA,M)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (M)
*> The scalar factors of the elementary reflectors corresponding
*> to the LQ factorization in AF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (2)
*> The test ratios:
*> RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
*> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL RESULT( * ), RWORK( * )
COMPLEX A( LDA, * ), AF( LDA, * ), L( LDA, * ),
$ Q( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX ROGUE
PARAMETER ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
* ..
* .. Local Scalars ..
INTEGER INFO
REAL ANORM, EPS, RESID
* ..
* .. External Functions ..
REAL CLANGE, CLANSY, SLAMCH
EXTERNAL CLANGE, CLANSY, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CHERK, CLACPY, CLASET, CUNGLQ
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, REAL
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
EPS = SLAMCH( 'Epsilon' )
*
* Copy the first k rows of the factorization to the array Q
*
CALL CLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
CALL CLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
* Generate the first n columns of the matrix Q
*
SRNAMT = 'CUNGLQ'
CALL CUNGLQ( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
* Copy L(1:k,1:m)
*
CALL CLASET( 'Full', K, M, CMPLX( ZERO ), CMPLX( ZERO ), L, LDA )
CALL CLACPY( 'Lower', K, M, AF, LDA, L, LDA )
*
* Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)'
*
CALL CGEMM( 'No transpose', 'Conjugate transpose', K, M, N,
$ CMPLX( -ONE ), A, LDA, Q, LDA, CMPLX( ONE ), L, LDA )
*
* Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) .
*
ANORM = CLANGE( '1', K, N, A, LDA, RWORK )
RESID = CLANGE( '1', K, M, L, LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q*Q'
*
CALL CLASET( 'Full', M, M, CMPLX( ZERO ), CMPLX( ONE ), L, LDA )
CALL CHERK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, L,
$ LDA )
*
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
RESID = CLANSY( '1', 'Upper', M, L, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
*
RETURN
*
* End of CLQT02
*
END
|