summaryrefslogtreecommitdiff
path: root/TESTING/LIN/cgtt02.f
blob: c23a2063befc6484031d86bf2faf669aec0ac832 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
      SUBROUTINE CGTT02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
     $                   RWORK, RESID )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            LDB, LDX, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            B( LDB, * ), D( * ), DL( * ), DU( * ),
     $                   X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  CGTT02 computes the residual for the solution to a tridiagonal
*  system of equations:
*     RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS),
*  where EPS is the machine epsilon.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER
*          Specifies the form of the residual.
*          = 'N':  B - A * X     (No transpose)
*          = 'T':  B - A**T * X  (Transpose)
*          = 'C':  B - A**H * X  (Conjugate transpose)
*
*  N       (input) INTEGTER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices B and X.  NRHS >= 0.
*
*  DL      (input) COMPLEX array, dimension (N-1)
*          The (n-1) sub-diagonal elements of A.
*
*  D       (input) COMPLEX array, dimension (N)
*          The diagonal elements of A.
*
*  DU      (input) COMPLEX array, dimension (N-1)
*          The (n-1) super-diagonal elements of A.
*
*  X       (input) COMPLEX array, dimension (LDX,NRHS)
*          The computed solution vectors X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side vectors for the system of
*          linear equations.
*          On exit, B is overwritten with the difference B - op(A)*X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          norm(B - op(A)*X) / (norm(A) * norm(X) * EPS)
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGT, SCASUM, SLAMCH
      EXTERNAL           LSAME, CLANGT, SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAGTM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0 or NRHS = 0
*
      RESID = ZERO
      IF( N.LE.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ).
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         ANORM = CLANGT( '1', N, DL, D, DU )
      ELSE
         ANORM = CLANGT( 'I', N, DL, D, DU )
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute B - op(A)*X.
*
      CALL CLAGTM( TRANS, N, NRHS, -ONE, DL, D, DU, X, LDX, ONE, B,
     $             LDB )
*
      DO 10 J = 1, NRHS
         BNORM = SCASUM( N, B( 1, J ), 1 )
         XNORM = SCASUM( N, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of CGTT02
*
      END