summaryrefslogtreecommitdiff
path: root/TESTING/LIN/cdrvgb.f
blob: 199354244f2ee54e7981a602396eca0b4e8ea9e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
*> \brief \b CDRVGB
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
*                          AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
*                          RWORK, IWORK, NOUT )
*
*       .. Scalar Arguments ..
*       LOGICAL            TSTERR
*       INTEGER            LA, LAFB, NN, NOUT, NRHS
*       REAL               THRESH
*       ..
*       .. Array Arguments ..
*       LOGICAL            DOTYPE( * )
*       INTEGER            IWORK( * ), NVAL( * )
*       REAL               RWORK( * ), S( * )
*       COMPLEX            A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
*      $                   WORK( * ), X( * ), XACT( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CDRVGB tests the driver routines CGBSV and -SVX.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] DOTYPE
*> \verbatim
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
*>          The matrix types to be used for testing.  Matrices of type j
*>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*>          NN is INTEGER
*>          The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*>          NVAL is INTEGER array, dimension (NN)
*>          The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand side vectors to be generated for
*>          each linear system.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is REAL
*>          The threshold value for the test ratios.  A result is
*>          included in the output file if RESULT >= THRESH.  To have
*>          every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*>          TSTERR is LOGICAL
*>          Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LA)
*> \endverbatim
*>
*> \param[in] LA
*> \verbatim
*>          LA is INTEGER
*>          The length of the array A.  LA >= (2*NMAX-1)*NMAX
*>          where NMAX is the largest entry in NVAL.
*> \endverbatim
*>
*> \param[out] AFB
*> \verbatim
*>          AFB is COMPLEX array, dimension (LAFB)
*> \endverbatim
*>
*> \param[in] LAFB
*> \verbatim
*>          LAFB is INTEGER
*>          The length of the array AFB.  LAFB >= (3*NMAX-2)*NMAX
*>          where NMAX is the largest entry in NVAL.
*> \endverbatim
*>
*> \param[out] ASAV
*> \verbatim
*>          ASAV is COMPLEX array, dimension (LA)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] BSAV
*> \verbatim
*>          BSAV is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*>          XACT is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is REAL array, dimension (2*NMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension
*>                      (NMAX*max(3,NRHS,NMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension
*>                      (max(NMAX,2*NRHS))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*>          NOUT is INTEGER
*>          The unit number for output.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2015
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
     $                   AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
     $                   RWORK, IWORK, NOUT )
*
*  -- LAPACK test routine (version 3.6.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2015
*
*     .. Scalar Arguments ..
      LOGICAL            TSTERR
      INTEGER            LA, LAFB, NN, NOUT, NRHS
      REAL               THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            IWORK( * ), NVAL( * )
      REAL               RWORK( * ), S( * )
      COMPLEX            A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
     $                   WORK( * ), X( * ), XACT( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
      INTEGER            NTYPES
      PARAMETER          ( NTYPES = 8 )
      INTEGER            NTESTS
      PARAMETER          ( NTESTS = 7 )
      INTEGER            NTRAN
      PARAMETER          ( NTRAN = 3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
      CHARACTER          DIST, EQUED, FACT, TRANS, TYPE, XTYPE
      CHARACTER*3        PATH
      INTEGER            I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN,
     $                   INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU,
     $                   LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS,
     $                   NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT
      REAL               AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV,
     $                   CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO,
     $                   ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW
*     ..
*     .. Local Arrays ..
      CHARACTER          EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
      REAL               RDUM( 1 ), RESULT( NTESTS )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGB, CLANGE, CLANTB, SGET06, SLAMCH
      EXTERNAL           LSAME, CLANGB, CLANGE, CLANTB, SGET06, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           ALADHD, ALAERH, ALASVM, CERRVX, CGBEQU, CGBSV,
     $                   CGBSVX, CGBT01, CGBT02, CGBT05, CGBTRF, CGBTRS,
     $                   CGET04, CLACPY, CLAQGB, CLARHS, CLASET, CLATB4,
     $                   CLATMS, XLAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, MAX, MIN
*     ..
*     .. Scalars in Common ..
      LOGICAL            LERR, OK
      CHARACTER*32       SRNAMT
      INTEGER            INFOT, NUNIT
*     ..
*     .. Common blocks ..
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEEDY / 1988, 1989, 1990, 1991 /
      DATA               TRANSS / 'N', 'T', 'C' /
      DATA               FACTS / 'F', 'N', 'E' /
      DATA               EQUEDS / 'N', 'R', 'C', 'B' /
*     ..
*     .. Executable Statements ..
*
*     Initialize constants and the random number seed.
*
      PATH( 1: 1 ) = 'Complex precision'
      PATH( 2: 3 ) = 'GB'
      NRUN = 0
      NFAIL = 0
      NERRS = 0
      DO 10 I = 1, 4
         ISEED( I ) = ISEEDY( I )
   10 CONTINUE
*
*     Test the error exits
*
      IF( TSTERR )
     $   CALL CERRVX( PATH, NOUT )
      INFOT = 0
*
*     Set the block size and minimum block size for testing.
*
      NB = 1
      NBMIN = 2
      CALL XLAENV( 1, NB )
      CALL XLAENV( 2, NBMIN )
*
*     Do for each value of N in NVAL
*
      DO 150 IN = 1, NN
         N = NVAL( IN )
         LDB = MAX( N, 1 )
         XTYPE = 'N'
*
*        Set limits on the number of loop iterations.
*
         NKL = MAX( 1, MIN( N, 4 ) )
         IF( N.EQ.0 )
     $      NKL = 1
         NKU = NKL
         NIMAT = NTYPES
         IF( N.LE.0 )
     $      NIMAT = 1
*
         DO 140 IKL = 1, NKL
*
*           Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes
*           it easier to skip redundant values for small values of N.
*
            IF( IKL.EQ.1 ) THEN
               KL = 0
            ELSE IF( IKL.EQ.2 ) THEN
               KL = MAX( N-1, 0 )
            ELSE IF( IKL.EQ.3 ) THEN
               KL = ( 3*N-1 ) / 4
            ELSE IF( IKL.EQ.4 ) THEN
               KL = ( N+1 ) / 4
            END IF
            DO 130 IKU = 1, NKU
*
*              Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order
*              makes it easier to skip redundant values for small
*              values of N.
*
               IF( IKU.EQ.1 ) THEN
                  KU = 0
               ELSE IF( IKU.EQ.2 ) THEN
                  KU = MAX( N-1, 0 )
               ELSE IF( IKU.EQ.3 ) THEN
                  KU = ( 3*N-1 ) / 4
               ELSE IF( IKU.EQ.4 ) THEN
                  KU = ( N+1 ) / 4
               END IF
*
*              Check that A and AFB are big enough to generate this
*              matrix.
*
               LDA = KL + KU + 1
               LDAFB = 2*KL + KU + 1
               IF( LDA*N.GT.LA .OR. LDAFB*N.GT.LAFB ) THEN
                  IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $               CALL ALADHD( NOUT, PATH )
                  IF( LDA*N.GT.LA ) THEN
                     WRITE( NOUT, FMT = 9999 )LA, N, KL, KU,
     $                  N*( KL+KU+1 )
                     NERRS = NERRS + 1
                  END IF
                  IF( LDAFB*N.GT.LAFB ) THEN
                     WRITE( NOUT, FMT = 9998 )LAFB, N, KL, KU,
     $                  N*( 2*KL+KU+1 )
                     NERRS = NERRS + 1
                  END IF
                  GO TO 130
               END IF
*
               DO 120 IMAT = 1, NIMAT
*
*                 Do the tests only if DOTYPE( IMAT ) is true.
*
                  IF( .NOT.DOTYPE( IMAT ) )
     $               GO TO 120
*
*                 Skip types 2, 3, or 4 if the matrix is too small.
*
                  ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
                  IF( ZEROT .AND. N.LT.IMAT-1 )
     $               GO TO 120
*
*                 Set up parameters with CLATB4 and generate a
*                 test matrix with CLATMS.
*
                  CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
     $                         MODE, CNDNUM, DIST )
                  RCONDC = ONE / CNDNUM
*
                  SRNAMT = 'CLATMS'
                  CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
     $                         CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK,
     $                         INFO )
*
*                 Check the error code from CLATMS.
*
                  IF( INFO.NE.0 ) THEN
                     CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N,
     $                            KL, KU, -1, IMAT, NFAIL, NERRS, NOUT )
                     GO TO 120
                  END IF
*
*                 For types 2, 3, and 4, zero one or more columns of
*                 the matrix to test that INFO is returned correctly.
*
                  IZERO = 0
                  IF( ZEROT ) THEN
                     IF( IMAT.EQ.2 ) THEN
                        IZERO = 1
                     ELSE IF( IMAT.EQ.3 ) THEN
                        IZERO = N
                     ELSE
                        IZERO = N / 2 + 1
                     END IF
                     IOFF = ( IZERO-1 )*LDA
                     IF( IMAT.LT.4 ) THEN
                        I1 = MAX( 1, KU+2-IZERO )
                        I2 = MIN( KL+KU+1, KU+1+( N-IZERO ) )
                        DO 20 I = I1, I2
                           A( IOFF+I ) = ZERO
   20                   CONTINUE
                     ELSE
                        DO 40 J = IZERO, N
                           DO 30 I = MAX( 1, KU+2-J ),
     $                             MIN( KL+KU+1, KU+1+( N-J ) )
                              A( IOFF+I ) = ZERO
   30                      CONTINUE
                           IOFF = IOFF + LDA
   40                   CONTINUE
                     END IF
                  END IF
*
*                 Save a copy of the matrix A in ASAV.
*
                  CALL CLACPY( 'Full', KL+KU+1, N, A, LDA, ASAV, LDA )
*
                  DO 110 IEQUED = 1, 4
                     EQUED = EQUEDS( IEQUED )
                     IF( IEQUED.EQ.1 ) THEN
                        NFACT = 3
                     ELSE
                        NFACT = 1
                     END IF
*
                     DO 100 IFACT = 1, NFACT
                        FACT = FACTS( IFACT )
                        PREFAC = LSAME( FACT, 'F' )
                        NOFACT = LSAME( FACT, 'N' )
                        EQUIL = LSAME( FACT, 'E' )
*
                        IF( ZEROT ) THEN
                           IF( PREFAC )
     $                        GO TO 100
                           RCONDO = ZERO
                           RCONDI = ZERO
*
                        ELSE IF( .NOT.NOFACT ) THEN
*
*                          Compute the condition number for comparison
*                          with the value returned by SGESVX (FACT =
*                          'N' reuses the condition number from the
*                          previous iteration with FACT = 'F').
*
                           CALL CLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
     $                                  AFB( KL+1 ), LDAFB )
                           IF( EQUIL .OR. IEQUED.GT.1 ) THEN
*
*                             Compute row and column scale factors to
*                             equilibrate the matrix A.
*
                              CALL CGBEQU( N, N, KL, KU, AFB( KL+1 ),
     $                                     LDAFB, S, S( N+1 ), ROWCND,
     $                                     COLCND, AMAX, INFO )
                              IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
                                 IF( LSAME( EQUED, 'R' ) ) THEN
                                    ROWCND = ZERO
                                    COLCND = ONE
                                 ELSE IF( LSAME( EQUED, 'C' ) ) THEN
                                    ROWCND = ONE
                                    COLCND = ZERO
                                 ELSE IF( LSAME( EQUED, 'B' ) ) THEN
                                    ROWCND = ZERO
                                    COLCND = ZERO
                                 END IF
*
*                                Equilibrate the matrix.
*
                                 CALL CLAQGB( N, N, KL, KU, AFB( KL+1 ),
     $                                        LDAFB, S, S( N+1 ),
     $                                        ROWCND, COLCND, AMAX,
     $                                        EQUED )
                              END IF
                           END IF
*
*                          Save the condition number of the
*                          non-equilibrated system for use in CGET04.
*
                           IF( EQUIL ) THEN
                              ROLDO = RCONDO
                              ROLDI = RCONDI
                           END IF
*
*                          Compute the 1-norm and infinity-norm of A.
*
                           ANORMO = CLANGB( '1', N, KL, KU, AFB( KL+1 ),
     $                              LDAFB, RWORK )
                           ANORMI = CLANGB( 'I', N, KL, KU, AFB( KL+1 ),
     $                              LDAFB, RWORK )
*
*                          Factor the matrix A.
*
                           CALL CGBTRF( N, N, KL, KU, AFB, LDAFB, IWORK,
     $                                  INFO )
*
*                          Form the inverse of A.
*
                           CALL CLASET( 'Full', N, N, CMPLX( ZERO ),
     $                                  CMPLX( ONE ), WORK, LDB )
                           SRNAMT = 'CGBTRS'
                           CALL CGBTRS( 'No transpose', N, KL, KU, N,
     $                                  AFB, LDAFB, IWORK, WORK, LDB,
     $                                  INFO )
*
*                          Compute the 1-norm condition number of A.
*
                           AINVNM = CLANGE( '1', N, N, WORK, LDB,
     $                              RWORK )
                           IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
                              RCONDO = ONE
                           ELSE
                              RCONDO = ( ONE / ANORMO ) / AINVNM
                           END IF
*
*                          Compute the infinity-norm condition number
*                          of A.
*
                           AINVNM = CLANGE( 'I', N, N, WORK, LDB,
     $                              RWORK )
                           IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
                              RCONDI = ONE
                           ELSE
                              RCONDI = ( ONE / ANORMI ) / AINVNM
                           END IF
                        END IF
*
                        DO 90 ITRAN = 1, NTRAN
*
*                          Do for each value of TRANS.
*
                           TRANS = TRANSS( ITRAN )
                           IF( ITRAN.EQ.1 ) THEN
                              RCONDC = RCONDO
                           ELSE
                              RCONDC = RCONDI
                           END IF
*
*                          Restore the matrix A.
*
                           CALL CLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
     $                                  A, LDA )
*
*                          Form an exact solution and set the right hand
*                          side.
*
                           SRNAMT = 'CLARHS'
                           CALL CLARHS( PATH, XTYPE, 'Full', TRANS, N,
     $                                  N, KL, KU, NRHS, A, LDA, XACT,
     $                                  LDB, B, LDB, ISEED, INFO )
                           XTYPE = 'C'
                           CALL CLACPY( 'Full', N, NRHS, B, LDB, BSAV,
     $                                  LDB )
*
                           IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
*
*                             --- Test CGBSV  ---
*
*                             Compute the LU factorization of the matrix
*                             and solve the system.
*
                              CALL CLACPY( 'Full', KL+KU+1, N, A, LDA,
     $                                     AFB( KL+1 ), LDAFB )
                              CALL CLACPY( 'Full', N, NRHS, B, LDB, X,
     $                                     LDB )
*
                              SRNAMT = 'CGBSV '
                              CALL CGBSV( N, KL, KU, NRHS, AFB, LDAFB,
     $                                    IWORK, X, LDB, INFO )
*
*                             Check error code from CGBSV .
*
                              IF( INFO.NE.IZERO )
     $                           CALL ALAERH( PATH, 'CGBSV ', INFO,
     $                                        IZERO, ' ', N, N, KL, KU,
     $                                        NRHS, IMAT, NFAIL, NERRS,
     $                                        NOUT )
*
*                             Reconstruct matrix from factors and
*                             compute residual.
*
                              CALL CGBT01( N, N, KL, KU, A, LDA, AFB,
     $                                     LDAFB, IWORK, WORK,
     $                                     RESULT( 1 ) )
                              NT = 1
                              IF( IZERO.EQ.0 ) THEN
*
*                                Compute residual of the computed
*                                solution.
*
                                 CALL CLACPY( 'Full', N, NRHS, B, LDB,
     $                                        WORK, LDB )
                                 CALL CGBT02( 'No transpose', N, N, KL,
     $                                        KU, NRHS, A, LDA, X, LDB,
     $                                        WORK, LDB, RESULT( 2 ) )
*
*                                Check solution from generated exact
*                                solution.
*
                                 CALL CGET04( N, NRHS, X, LDB, XACT,
     $                                        LDB, RCONDC, RESULT( 3 ) )
                                 NT = 3
                              END IF
*
*                             Print information about the tests that did
*                             not pass the threshold.
*
                              DO 50 K = 1, NT
                                 IF( RESULT( K ).GE.THRESH ) THEN
                                    IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                                 CALL ALADHD( NOUT, PATH )
                                    WRITE( NOUT, FMT = 9997 )'CGBSV ',
     $                                 N, KL, KU, IMAT, K, RESULT( K )
                                    NFAIL = NFAIL + 1
                                 END IF
   50                         CONTINUE
                              NRUN = NRUN + NT
                           END IF
*
*                          --- Test CGBSVX ---
*
                           IF( .NOT.PREFAC )
     $                        CALL CLASET( 'Full', 2*KL+KU+1, N,
     $                                     CMPLX( ZERO ), CMPLX( ZERO ),
     $                                     AFB, LDAFB )
                           CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
     $                                  CMPLX( ZERO ), X, LDB )
                           IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
*
*                             Equilibrate the matrix if FACT = 'F' and
*                             EQUED = 'R', 'C', or 'B'.
*
                              CALL CLAQGB( N, N, KL, KU, A, LDA, S,
     $                                     S( N+1 ), ROWCND, COLCND,
     $                                     AMAX, EQUED )
                           END IF
*
*                          Solve the system and compute the condition
*                          number and error bounds using CGBSVX.
*
                           SRNAMT = 'CGBSVX'
                           CALL CGBSVX( FACT, TRANS, N, KL, KU, NRHS, A,
     $                                  LDA, AFB, LDAFB, IWORK, EQUED,
     $                                  S, S( LDB+1 ), B, LDB, X, LDB,
     $                                  RCOND, RWORK, RWORK( NRHS+1 ),
     $                                  WORK, RWORK( 2*NRHS+1 ), INFO )
*
*                          Check the error code from CGBSVX.
*
                           IF( INFO.NE.IZERO )
     $                        CALL ALAERH( PATH, 'CGBSVX', INFO, IZERO,
     $                                     FACT // TRANS, N, N, KL, KU,
     $                                     NRHS, IMAT, NFAIL, NERRS,
     $                                     NOUT )
*                          Compare RWORK(2*NRHS+1) from CGBSVX with the
*                          computed reciprocal pivot growth RPVGRW
*
                           IF( INFO.NE.0 .AND. INFO.LE.N) THEN
                              ANRMPV = ZERO
                              DO 70 J = 1, INFO
                                 DO 60 I = MAX( KU+2-J, 1 ),
     $                                   MIN( N+KU+1-J, KL+KU+1 )
                                    ANRMPV = MAX( ANRMPV,
     $                                       ABS( A( I+( J-1 )*LDA ) ) )
   60                            CONTINUE
   70                         CONTINUE
                              RPVGRW = CLANTB( 'M', 'U', 'N', INFO,
     $                                 MIN( INFO-1, KL+KU ),
     $                                 AFB( MAX( 1, KL+KU+2-INFO ) ),
     $                                 LDAFB, RDUM )
                              IF( RPVGRW.EQ.ZERO ) THEN
                                 RPVGRW = ONE
                              ELSE
                                 RPVGRW = ANRMPV / RPVGRW
                              END IF
                           ELSE
                              RPVGRW = CLANTB( 'M', 'U', 'N', N, KL+KU,
     $                                 AFB, LDAFB, RDUM )
                              IF( RPVGRW.EQ.ZERO ) THEN
                                 RPVGRW = ONE
                              ELSE
                                 RPVGRW = CLANGB( 'M', N, KL, KU, A,
     $                                    LDA, RDUM ) / RPVGRW
                              END IF
                           END IF
                           RESULT( 7 ) = ABS( RPVGRW-RWORK( 2*NRHS+1 ) )
     $                                    / MAX( RWORK( 2*NRHS+1 ),
     $                                   RPVGRW ) / SLAMCH( 'E' )
*
                           IF( .NOT.PREFAC ) THEN
*
*                             Reconstruct matrix from factors and
*                             compute residual.
*
                              CALL CGBT01( N, N, KL, KU, A, LDA, AFB,
     $                                     LDAFB, IWORK, WORK,
     $                                     RESULT( 1 ) )
                              K1 = 1
                           ELSE
                              K1 = 2
                           END IF
*
                           IF( INFO.EQ.0 ) THEN
                              TRFCON = .FALSE.
*
*                             Compute residual of the computed solution.
*
                              CALL CLACPY( 'Full', N, NRHS, BSAV, LDB,
     $                                     WORK, LDB )
                              CALL CGBT02( TRANS, N, N, KL, KU, NRHS,
     $                                     ASAV, LDA, X, LDB, WORK, LDB,
     $                                     RESULT( 2 ) )
*
*                             Check solution from generated exact
*                             solution.
*
                              IF( NOFACT .OR. ( PREFAC .AND.
     $                            LSAME( EQUED, 'N' ) ) ) THEN
                                 CALL CGET04( N, NRHS, X, LDB, XACT,
     $                                        LDB, RCONDC, RESULT( 3 ) )
                              ELSE
                                 IF( ITRAN.EQ.1 ) THEN
                                    ROLDC = ROLDO
                                 ELSE
                                    ROLDC = ROLDI
                                 END IF
                                 CALL CGET04( N, NRHS, X, LDB, XACT,
     $                                        LDB, ROLDC, RESULT( 3 ) )
                              END IF
*
*                             Check the error bounds from iterative
*                             refinement.
*
                              CALL CGBT05( TRANS, N, KL, KU, NRHS, ASAV,
     $                                     LDA, BSAV, LDB, X, LDB, XACT,
     $                                     LDB, RWORK, RWORK( NRHS+1 ),
     $                                     RESULT( 4 ) )
                           ELSE
                              TRFCON = .TRUE.
                           END IF
*
*                          Compare RCOND from CGBSVX with the computed
*                          value in RCONDC.
*
                           RESULT( 6 ) = SGET06( RCOND, RCONDC )
*
*                          Print information about the tests that did
*                          not pass the threshold.
*
                           IF( .NOT.TRFCON ) THEN
                              DO 80 K = K1, NTESTS
                                 IF( RESULT( K ).GE.THRESH ) THEN
                                    IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                                 CALL ALADHD( NOUT, PATH )
                                    IF( PREFAC ) THEN
                                       WRITE( NOUT, FMT = 9995 )
     $                                    'CGBSVX', FACT, TRANS, N, KL,
     $                                    KU, EQUED, IMAT, K,
     $                                    RESULT( K )
                                    ELSE
                                       WRITE( NOUT, FMT = 9996 )
     $                                    'CGBSVX', FACT, TRANS, N, KL,
     $                                    KU, IMAT, K, RESULT( K )
                                    END IF
                                    NFAIL = NFAIL + 1
                                 END IF
   80                         CONTINUE
                              NRUN = NRUN + NTESTS - K1 + 1
                           ELSE
                              IF( RESULT( 1 ).GE.THRESH .AND. .NOT.
     $                            PREFAC ) THEN
                                 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                              CALL ALADHD( NOUT, PATH )
                                 IF( PREFAC ) THEN
                                    WRITE( NOUT, FMT = 9995 )'CGBSVX',
     $                                 FACT, TRANS, N, KL, KU, EQUED,
     $                                 IMAT, 1, RESULT( 1 )
                                 ELSE
                                    WRITE( NOUT, FMT = 9996 )'CGBSVX',
     $                                 FACT, TRANS, N, KL, KU, IMAT, 1,
     $                                 RESULT( 1 )
                                 END IF
                                 NFAIL = NFAIL + 1
                                 NRUN = NRUN + 1
                              END IF
                              IF( RESULT( 6 ).GE.THRESH ) THEN
                                 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                              CALL ALADHD( NOUT, PATH )
                                 IF( PREFAC ) THEN
                                    WRITE( NOUT, FMT = 9995 )'CGBSVX',
     $                                 FACT, TRANS, N, KL, KU, EQUED,
     $                                 IMAT, 6, RESULT( 6 )
                                 ELSE
                                    WRITE( NOUT, FMT = 9996 )'CGBSVX',
     $                                 FACT, TRANS, N, KL, KU, IMAT, 6,
     $                                 RESULT( 6 )
                                 END IF
                                 NFAIL = NFAIL + 1
                                 NRUN = NRUN + 1
                              END IF
                              IF( RESULT( 7 ).GE.THRESH ) THEN
                                 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                              CALL ALADHD( NOUT, PATH )
                                 IF( PREFAC ) THEN
                                    WRITE( NOUT, FMT = 9995 )'CGBSVX',
     $                                 FACT, TRANS, N, KL, KU, EQUED,
     $                                 IMAT, 7, RESULT( 7 )
                                 ELSE
                                    WRITE( NOUT, FMT = 9996 )'CGBSVX',
     $                                 FACT, TRANS, N, KL, KU, IMAT, 7,
     $                                 RESULT( 7 )
                                 END IF
                                 NFAIL = NFAIL + 1
                                 NRUN = NRUN + 1
                              END IF
                           END IF
   90                   CONTINUE
  100                CONTINUE
  110             CONTINUE
  120          CONTINUE
  130       CONTINUE
  140    CONTINUE
  150 CONTINUE
*
*     Print a summary of the results.
*
      CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
 9999 FORMAT( ' *** In CDRVGB, LA=', I5, ' is too small for N=', I5,
     $      ', KU=', I5, ', KL=', I5, / ' ==> Increase LA to at least ',
     $      I5 )
 9998 FORMAT( ' *** In CDRVGB, LAFB=', I5, ' is too small for N=', I5,
     $      ', KU=', I5, ', KL=', I5, /
     $      ' ==> Increase LAFB to at least ', I5 )
 9997 FORMAT( 1X, A, ', N=', I5, ', KL=', I5, ', KU=', I5, ', type ',
     $      I1, ', test(', I1, ')=', G12.5 )
 9996 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
     $      I5, ',...), type ', I1, ', test(', I1, ')=', G12.5 )
 9995 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
     $      I5, ',...), EQUED=''', A1, ''', type ', I1, ', test(', I1,
     $      ')=', G12.5 )
*
      RETURN
*
*     End of CDRVGB
*
      END