summaryrefslogtreecommitdiff
path: root/TESTING/LIN/cchkgt.f
blob: 13677b45f7f8fecc46acf76de59ec6a5dd496fd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
*> \brief \b CCHKGT
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
*                          A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
* 
*       .. Scalar Arguments ..
*       LOGICAL            TSTERR
*       INTEGER            NN, NNS, NOUT
*       REAL               THRESH
*       ..
*       .. Array Arguments ..
*       LOGICAL            DOTYPE( * )
*       INTEGER            IWORK( * ), NSVAL( * ), NVAL( * )
*       REAL               RWORK( * )
*       COMPLEX            A( * ), AF( * ), B( * ), WORK( * ), X( * ),
*      $                   XACT( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CCHKGT tests CGTTRF, -TRS, -RFS, and -CON
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] DOTYPE
*> \verbatim
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
*>          The matrix types to be used for testing.  Matrices of type j
*>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*>          NN is INTEGER
*>          The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*>          NVAL is INTEGER array, dimension (NN)
*>          The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*>          NNS is INTEGER
*>          The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*>          NSVAL is INTEGER array, dimension (NNS)
*>          The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is REAL
*>          The threshold value for the test ratios.  A result is
*>          included in the output file if RESULT >= THRESH.  To have
*>          every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*>          TSTERR is LOGICAL
*>          Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX array, dimension (NMAX*4)
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*>          AF is COMPLEX array, dimension (NMAX*4)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is COMPLEX array, dimension (NMAX*NSMAX)
*>          where NSMAX is the largest entry in NSVAL.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*>          XACT is COMPLEX array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension
*>                      (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension
*>                      (max(NMAX)+2*NSMAX)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*>          NOUT is INTEGER
*>          The unit number for output.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
     $                   A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      LOGICAL            TSTERR
      INTEGER            NN, NNS, NOUT
      REAL               THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            IWORK( * ), NSVAL( * ), NVAL( * )
      REAL               RWORK( * )
      COMPLEX            A( * ), AF( * ), B( * ), WORK( * ), X( * ),
     $                   XACT( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
      INTEGER            NTYPES
      PARAMETER          ( NTYPES = 12 )
      INTEGER            NTESTS
      PARAMETER          ( NTESTS = 7 )
*     ..
*     .. Local Scalars ..
      LOGICAL            TRFCON, ZEROT
      CHARACTER          DIST, NORM, TRANS, TYPE
      CHARACTER*3        PATH
      INTEGER            I, IMAT, IN, INFO, IRHS, ITRAN, IX, IZERO, J,
     $                   K, KL, KOFF, KU, LDA, M, MODE, N, NERRS, NFAIL,
     $                   NIMAT, NRHS, NRUN
      REAL               AINVNM, ANORM, COND, RCOND, RCONDC, RCONDI,
     $                   RCONDO
*     ..
*     .. Local Arrays ..
      CHARACTER          TRANSS( 3 )
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
      REAL               RESULT( NTESTS )
      COMPLEX            Z( 3 )
*     ..
*     .. External Functions ..
      REAL               CLANGT, SCASUM, SGET06
      EXTERNAL           CLANGT, SCASUM, SGET06
*     ..
*     .. External Subroutines ..
      EXTERNAL           ALAERH, ALAHD, ALASUM, CCOPY, CERRGE, CGET04,
     $                   CGTCON, CGTRFS, CGTT01, CGTT02, CGTT05, CGTTRF,
     $                   CGTTRS, CLACPY, CLAGTM, CLARNV, CLATB4, CLATMS,
     $                   CSSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Scalars in Common ..
      LOGICAL            LERR, OK
      CHARACTER*32       SRNAMT
      INTEGER            INFOT, NUNIT
*     ..
*     .. Common blocks ..
      COMMON             / INFOC / INFOT, NUNIT, OK, LERR
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
     $                   'C' /
*     ..
*     .. Executable Statements ..
*
      PATH( 1: 1 ) = 'Complex precision'
      PATH( 2: 3 ) = 'GT'
      NRUN = 0
      NFAIL = 0
      NERRS = 0
      DO 10 I = 1, 4
         ISEED( I ) = ISEEDY( I )
   10 CONTINUE
*
*     Test the error exits
*
      IF( TSTERR )
     $   CALL CERRGE( PATH, NOUT )
      INFOT = 0
*
      DO 110 IN = 1, NN
*
*        Do for each value of N in NVAL.
*
         N = NVAL( IN )
         M = MAX( N-1, 0 )
         LDA = MAX( 1, N )
         NIMAT = NTYPES
         IF( N.LE.0 )
     $      NIMAT = 1
*
         DO 100 IMAT = 1, NIMAT
*
*           Do the tests only if DOTYPE( IMAT ) is true.
*
            IF( .NOT.DOTYPE( IMAT ) )
     $         GO TO 100
*
*           Set up parameters with CLATB4.
*
            CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
     $                   COND, DIST )
*
            ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
            IF( IMAT.LE.6 ) THEN
*
*              Types 1-6:  generate matrices of known condition number.
*
               KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
               SRNAMT = 'CLATMS'
               CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
     $                      ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
     $                      INFO )
*
*              Check the error code from CLATMS.
*
               IF( INFO.NE.0 ) THEN
                  CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N, KL,
     $                         KU, -1, IMAT, NFAIL, NERRS, NOUT )
                  GO TO 100
               END IF
               IZERO = 0
*
               IF( N.GT.1 ) THEN
                  CALL CCOPY( N-1, AF( 4 ), 3, A, 1 )
                  CALL CCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
               END IF
               CALL CCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
            ELSE
*
*              Types 7-12:  generate tridiagonal matrices with
*              unknown condition numbers.
*
               IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
*
*                 Generate a matrix with elements whose real and
*                 imaginary parts are from [-1,1].
*
                  CALL CLARNV( 2, ISEED, N+2*M, A )
                  IF( ANORM.NE.ONE )
     $               CALL CSSCAL( N+2*M, ANORM, A, 1 )
               ELSE IF( IZERO.GT.0 ) THEN
*
*                 Reuse the last matrix by copying back the zeroed out
*                 elements.
*
                  IF( IZERO.EQ.1 ) THEN
                     A( N ) = Z( 2 )
                     IF( N.GT.1 )
     $                  A( 1 ) = Z( 3 )
                  ELSE IF( IZERO.EQ.N ) THEN
                     A( 3*N-2 ) = Z( 1 )
                     A( 2*N-1 ) = Z( 2 )
                  ELSE
                     A( 2*N-2+IZERO ) = Z( 1 )
                     A( N-1+IZERO ) = Z( 2 )
                     A( IZERO ) = Z( 3 )
                  END IF
               END IF
*
*              If IMAT > 7, set one column of the matrix to 0.
*
               IF( .NOT.ZEROT ) THEN
                  IZERO = 0
               ELSE IF( IMAT.EQ.8 ) THEN
                  IZERO = 1
                  Z( 2 ) = A( N )
                  A( N ) = ZERO
                  IF( N.GT.1 ) THEN
                     Z( 3 ) = A( 1 )
                     A( 1 ) = ZERO
                  END IF
               ELSE IF( IMAT.EQ.9 ) THEN
                  IZERO = N
                  Z( 1 ) = A( 3*N-2 )
                  Z( 2 ) = A( 2*N-1 )
                  A( 3*N-2 ) = ZERO
                  A( 2*N-1 ) = ZERO
               ELSE
                  IZERO = ( N+1 ) / 2
                  DO 20 I = IZERO, N - 1
                     A( 2*N-2+I ) = ZERO
                     A( N-1+I ) = ZERO
                     A( I ) = ZERO
   20             CONTINUE
                  A( 3*N-2 ) = ZERO
                  A( 2*N-1 ) = ZERO
               END IF
            END IF
*
*+    TEST 1
*           Factor A as L*U and compute the ratio
*              norm(L*U - A) / (n * norm(A) * EPS )
*
            CALL CCOPY( N+2*M, A, 1, AF, 1 )
            SRNAMT = 'CGTTRF'
            CALL CGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
     $                   IWORK, INFO )
*
*           Check error code from CGTTRF.
*
            IF( INFO.NE.IZERO )
     $         CALL ALAERH( PATH, 'CGTTRF', INFO, IZERO, ' ', N, N, 1,
     $                      1, -1, IMAT, NFAIL, NERRS, NOUT )
            TRFCON = INFO.NE.0
*
            CALL CGTT01( N, A, A( M+1 ), A( N+M+1 ), AF, AF( M+1 ),
     $                   AF( N+M+1 ), AF( N+2*M+1 ), IWORK, WORK, LDA,
     $                   RWORK, RESULT( 1 ) )
*
*           Print the test ratio if it is .GE. THRESH.
*
            IF( RESULT( 1 ).GE.THRESH ) THEN
               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $            CALL ALAHD( NOUT, PATH )
               WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
               NFAIL = NFAIL + 1
            END IF
            NRUN = NRUN + 1
*
            DO 50 ITRAN = 1, 2
               TRANS = TRANSS( ITRAN )
               IF( ITRAN.EQ.1 ) THEN
                  NORM = 'O'
               ELSE
                  NORM = 'I'
               END IF
               ANORM = CLANGT( NORM, N, A, A( M+1 ), A( N+M+1 ) )
*
               IF( .NOT.TRFCON ) THEN
*
*                 Use CGTTRS to solve for one column at a time of
*                 inv(A), computing the maximum column sum as we go.
*
                  AINVNM = ZERO
                  DO 40 I = 1, N
                     DO 30 J = 1, N
                        X( J ) = ZERO
   30                CONTINUE
                     X( I ) = ONE
                     CALL CGTTRS( TRANS, N, 1, AF, AF( M+1 ),
     $                            AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
     $                            LDA, INFO )
                     AINVNM = MAX( AINVNM, SCASUM( N, X, 1 ) )
   40             CONTINUE
*
*                 Compute RCONDC = 1 / (norm(A) * norm(inv(A))
*
                  IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
                     RCONDC = ONE
                  ELSE
                     RCONDC = ( ONE / ANORM ) / AINVNM
                  END IF
                  IF( ITRAN.EQ.1 ) THEN
                     RCONDO = RCONDC
                  ELSE
                     RCONDI = RCONDC
                  END IF
               ELSE
                  RCONDC = ZERO
               END IF
*
*+    TEST 7
*              Estimate the reciprocal of the condition number of the
*              matrix.
*
               SRNAMT = 'CGTCON'
               CALL CGTCON( NORM, N, AF, AF( M+1 ), AF( N+M+1 ),
     $                      AF( N+2*M+1 ), IWORK, ANORM, RCOND, WORK,
     $                      INFO )
*
*              Check error code from CGTCON.
*
               IF( INFO.NE.0 )
     $            CALL ALAERH( PATH, 'CGTCON', INFO, 0, NORM, N, N, -1,
     $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
*
               RESULT( 7 ) = SGET06( RCOND, RCONDC )
*
*              Print the test ratio if it is .GE. THRESH.
*
               IF( RESULT( 7 ).GE.THRESH ) THEN
                  IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $               CALL ALAHD( NOUT, PATH )
                  WRITE( NOUT, FMT = 9997 )NORM, N, IMAT, 7,
     $               RESULT( 7 )
                  NFAIL = NFAIL + 1
               END IF
               NRUN = NRUN + 1
   50       CONTINUE
*
*           Skip the remaining tests if the matrix is singular.
*
            IF( TRFCON )
     $         GO TO 100
*
            DO 90 IRHS = 1, NNS
               NRHS = NSVAL( IRHS )
*
*              Generate NRHS random solution vectors.
*
               IX = 1
               DO 60 J = 1, NRHS
                  CALL CLARNV( 2, ISEED, N, XACT( IX ) )
                  IX = IX + LDA
   60          CONTINUE
*
               DO 80 ITRAN = 1, 3
                  TRANS = TRANSS( ITRAN )
                  IF( ITRAN.EQ.1 ) THEN
                     RCONDC = RCONDO
                  ELSE
                     RCONDC = RCONDI
                  END IF
*
*                 Set the right hand side.
*
                  CALL CLAGTM( TRANS, N, NRHS, ONE, A,
     $                         A( M+1 ), A( N+M+1 ), XACT, LDA,
     $                         ZERO, B, LDA )
*
*+    TEST 2
*              Solve op(A) * X = B and compute the residual.
*
                  CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
                  SRNAMT = 'CGTTRS'
                  CALL CGTTRS( TRANS, N, NRHS, AF, AF( M+1 ),
     $                         AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
     $                         LDA, INFO )
*
*              Check error code from CGTTRS.
*
                  IF( INFO.NE.0 )
     $               CALL ALAERH( PATH, 'CGTTRS', INFO, 0, TRANS, N, N,
     $                            -1, -1, NRHS, IMAT, NFAIL, NERRS,
     $                            NOUT )
*
                  CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
                  CALL CGTT02( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
     $                         X, LDA, WORK, LDA, RESULT( 2 ) )
*
*+    TEST 3
*              Check solution from generated exact solution.
*
                  CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
     $                         RESULT( 3 ) )
*
*+    TESTS 4, 5, and 6
*              Use iterative refinement to improve the solution.
*
                  SRNAMT = 'CGTRFS'
                  CALL CGTRFS( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
     $                         AF, AF( M+1 ), AF( N+M+1 ),
     $                         AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
     $                         RWORK, RWORK( NRHS+1 ), WORK,
     $                         RWORK( 2*NRHS+1 ), INFO )
*
*              Check error code from CGTRFS.
*
                  IF( INFO.NE.0 )
     $               CALL ALAERH( PATH, 'CGTRFS', INFO, 0, TRANS, N, N,
     $                            -1, -1, NRHS, IMAT, NFAIL, NERRS,
     $                            NOUT )
*
                  CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
     $                         RESULT( 4 ) )
                  CALL CGTT05( TRANS, N, NRHS, A, A( M+1 ), A( N+M+1 ),
     $                         B, LDA, X, LDA, XACT, LDA, RWORK,
     $                         RWORK( NRHS+1 ), RESULT( 5 ) )
*
*              Print information about the tests that did not pass the
*              threshold.
*
                  DO 70 K = 2, 6
                     IF( RESULT( K ).GE.THRESH ) THEN
                        IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
     $                     CALL ALAHD( NOUT, PATH )
                        WRITE( NOUT, FMT = 9998 )TRANS, N, NRHS, IMAT,
     $                     K, RESULT( K )
                        NFAIL = NFAIL + 1
                     END IF
   70             CONTINUE
                  NRUN = NRUN + 5
   80          CONTINUE
   90       CONTINUE
  100    CONTINUE
  110 CONTINUE
*
*     Print a summary of the results.
*
      CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
 9999 FORMAT( 12X, 'N =', I5, ',', 10X, ' type ', I2, ', test(', I2,
     $      ') = ', G12.5 )
 9998 FORMAT( ' TRANS=''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
     $      I2, ', test(', I2, ') = ', G12.5 )
 9997 FORMAT( ' NORM =''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
     $      ', test(', I2, ') = ', G12.5 )
      RETURN
*
*     End of CCHKGT
*
      END