1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
*> \brief \b ZUNT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZUNT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RWORK,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER ROWCOL
* INTEGER LDU, LWORK, M, N
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 U( LDU, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZUNT01 checks that the matrix U is unitary by computing the ratio
*>
*> RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
*> or
*> RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
*>
*> Alternatively, if there isn't sufficient workspace to form
*> I - U*U' or I - U'*U, the ratio is computed as
*>
*> RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
*> or
*> RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
*>
*> where EPS is the machine precision. ROWCOL is used only if m = n;
*> if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is
*> assumed to be 'R'.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ROWCOL
*> \verbatim
*> ROWCOL is CHARACTER
*> Specifies whether the rows or columns of U should be checked
*> for orthogonality. Used only if M = N.
*> = 'R': Check for orthogonal rows of U
*> = 'C': Check for orthogonal columns of U
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix U.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix U.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is COMPLEX*16 array, dimension (LDU,N)
*> The unitary matrix U. U is checked for orthogonal columns
*> if m > n or if m = n and ROWCOL = 'C'. U is checked for
*> orthogonal rows if m < n or if m = n and ROWCOL = 'R'.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of the array U. LDU >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. For best performance, LWORK
*> should be at least N*N if ROWCOL = 'C' or M*M if
*> ROWCOL = 'R', but the test will be done even if LWORK is 0.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (min(M,N))
*> Used only if LWORK is large enough to use the Level 3 BLAS
*> code.
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or
*> RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZUNT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RWORK,
$ RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER ROWCOL
INTEGER LDU, LWORK, M, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 U( LDU, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
CHARACTER TRANSU
INTEGER I, J, K, LDWORK, MNMIN
DOUBLE PRECISION EPS
COMPLEX*16 TMP, ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANSY
COMPLEX*16 ZDOTC
EXTERNAL LSAME, DLAMCH, ZLANSY, ZDOTC
* ..
* .. External Subroutines ..
EXTERNAL ZHERK, ZLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DIMAG, MAX, MIN
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
RESID = ZERO
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
EPS = DLAMCH( 'Precision' )
IF( M.LT.N .OR. ( M.EQ.N .AND. LSAME( ROWCOL, 'R' ) ) ) THEN
TRANSU = 'N'
K = N
ELSE
TRANSU = 'C'
K = M
END IF
MNMIN = MIN( M, N )
*
IF( ( MNMIN+1 )*MNMIN.LE.LWORK ) THEN
LDWORK = MNMIN
ELSE
LDWORK = 0
END IF
IF( LDWORK.GT.0 ) THEN
*
* Compute I - U*U' or I - U'*U.
*
CALL ZLASET( 'Upper', MNMIN, MNMIN, DCMPLX( ZERO ),
$ DCMPLX( ONE ), WORK, LDWORK )
CALL ZHERK( 'Upper', TRANSU, MNMIN, K, -ONE, U, LDU, ONE, WORK,
$ LDWORK )
*
* Compute norm( I - U*U' ) / ( K * EPS ) .
*
RESID = ZLANSY( '1', 'Upper', MNMIN, WORK, LDWORK, RWORK )
RESID = ( RESID / DBLE( K ) ) / EPS
ELSE IF( TRANSU.EQ.'C' ) THEN
*
* Find the maximum element in abs( I - U'*U ) / ( m * EPS )
*
DO 20 J = 1, N
DO 10 I = 1, J
IF( I.NE.J ) THEN
TMP = ZERO
ELSE
TMP = ONE
END IF
TMP = TMP - ZDOTC( M, U( 1, I ), 1, U( 1, J ), 1 )
RESID = MAX( RESID, CABS1( TMP ) )
10 CONTINUE
20 CONTINUE
RESID = ( RESID / DBLE( M ) ) / EPS
ELSE
*
* Find the maximum element in abs( I - U*U' ) / ( n * EPS )
*
DO 40 J = 1, M
DO 30 I = 1, J
IF( I.NE.J ) THEN
TMP = ZERO
ELSE
TMP = ONE
END IF
TMP = TMP - ZDOTC( N, U( J, 1 ), LDU, U( I, 1 ), LDU )
RESID = MAX( RESID, CABS1( TMP ) )
30 CONTINUE
40 CONTINUE
RESID = ( RESID / DBLE( N ) ) / EPS
END IF
RETURN
*
* End of ZUNT01
*
END
|