summaryrefslogtreecommitdiff
path: root/TESTING/EIG/zgrqts.f
blob: 9575ba3f62ab64cf67ed000d967cd5fc04fd2418 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
*> \brief \b ZGRQTS
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
*                          BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
* 
*       .. Scalar Arguments ..
*       INTEGER            LDA, LDB, LWORK, M, N, P
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RESULT( 4 ), RWORK( * )
*       COMPLEX*16         A( LDA, * ), AF( LDA, * ), B( LDB, * ),
*      $                   BF( LDB, * ), BWK( LDB, * ), Q( LDA, * ),
*      $                   R( LDA, * ), T( LDB, * ), TAUA( * ), TAUB( * ),
*      $                   WORK( LWORK ), Z( LDB, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGRQTS tests ZGGRQF, which computes the GRQ factorization of an
*> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*>          P is INTEGER
*>          The number of rows of the matrix B.  P >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrices A and B.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The M-by-N matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*>          AF is COMPLEX*16 array, dimension (LDA,N)
*>          Details of the GRQ factorization of A and B, as returned
*>          by ZGGRQF, see CGGRQF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is COMPLEX*16 array, dimension (LDA,N)
*>          The N-by-N unitary matrix Q.
*> \endverbatim
*>
*> \param[out] R
*> \verbatim
*>          R is COMPLEX*16 array, dimension (LDA,MAX(M,N))
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays A, AF, R and Q.
*>          LDA >= max(M,N).
*> \endverbatim
*>
*> \param[out] TAUA
*> \verbatim
*>          TAUA is COMPLEX*16 array, dimension (min(M,N))
*>          The scalar factors of the elementary reflectors, as returned
*>          by DGGQRC.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,N)
*>          On entry, the P-by-N matrix A.
*> \endverbatim
*>
*> \param[out] BF
*> \verbatim
*>          BF is COMPLEX*16 array, dimension (LDB,N)
*>          Details of the GQR factorization of A and B, as returned
*>          by ZGGRQF, see CGGRQF for further details.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is DOUBLE PRECISION array, dimension (LDB,P)
*>          The P-by-P unitary matrix Z.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*>          T is COMPLEX*16 array, dimension (LDB,max(P,N))
*> \endverbatim
*>
*> \param[out] BWK
*> \verbatim
*>          BWK is COMPLEX*16 array, dimension (LDB,N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the arrays B, BF, Z and T.
*>          LDB >= max(P,N).
*> \endverbatim
*>
*> \param[out] TAUB
*> \verbatim
*>          TAUB is COMPLEX*16 array, dimension (min(P,N))
*>          The scalar factors of the elementary reflectors, as returned
*>          by DGGRQF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK, LWORK >= max(M,P,N)**2.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (4)
*>          The test ratios:
*>            RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP)
*>            RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP)
*>            RESULT(3) = norm( I - Q'*Q ) / ( N*ULP )
*>            RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
*  =====================================================================
      SUBROUTINE ZGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
     $                   BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LWORK, M, N, P
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RESULT( 4 ), RWORK( * )
      COMPLEX*16         A( LDA, * ), AF( LDA, * ), B( LDB, * ),
     $                   BF( LDB, * ), BWK( LDB, * ), Q( LDA, * ),
     $                   R( LDA, * ), T( LDB, * ), TAUA( * ), TAUB( * ),
     $                   WORK( LWORK ), Z( LDB, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
      COMPLEX*16         CROGUE
      PARAMETER          ( CROGUE = ( -1.0D+10, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      DOUBLE PRECISION   ANORM, BNORM, RESID, ULP, UNFL
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHE
      EXTERNAL           DLAMCH, ZLANGE, ZLANHE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZGGRQF, ZHERK, ZLACPY, ZLASET, ZUNGQR,
     $                   ZUNGRQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      ULP = DLAMCH( 'Precision' )
      UNFL = DLAMCH( 'Safe minimum' )
*
*     Copy the matrix A to the array AF.
*
      CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
      CALL ZLACPY( 'Full', P, N, B, LDB, BF, LDB )
*
      ANORM = MAX( ZLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
      BNORM = MAX( ZLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
*
*     Factorize the matrices A and B in the arrays AF and BF.
*
      CALL ZGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK, LWORK,
     $             INFO )
*
*     Generate the N-by-N matrix Q
*
      CALL ZLASET( 'Full', N, N, CROGUE, CROGUE, Q, LDA )
      IF( M.LE.N ) THEN
         IF( M.GT.0 .AND. M.LT.N )
     $      CALL ZLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
         IF( M.GT.1 )
     $      CALL ZLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
     $                   Q( N-M+2, N-M+1 ), LDA )
      ELSE
         IF( N.GT.1 )
     $      CALL ZLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
     $                   Q( 2, 1 ), LDA )
      END IF
      CALL ZUNGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO )
*
*     Generate the P-by-P matrix Z
*
      CALL ZLASET( 'Full', P, P, CROGUE, CROGUE, Z, LDB )
      IF( P.GT.1 )
     $   CALL ZLACPY( 'Lower', P-1, N, BF( 2, 1 ), LDB, Z( 2, 1 ), LDB )
      CALL ZUNGQR( P, P, MIN( P, N ), Z, LDB, TAUB, WORK, LWORK, INFO )
*
*     Copy R
*
      CALL ZLASET( 'Full', M, N, CZERO, CZERO, R, LDA )
      IF( M.LE.N ) THEN
         CALL ZLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ),
     $                LDA )
      ELSE
         CALL ZLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
         CALL ZLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ),
     $                LDA )
      END IF
*
*     Copy T
*
      CALL ZLASET( 'Full', P, N, CZERO, CZERO, T, LDB )
      CALL ZLACPY( 'Upper', P, N, BF, LDB, T, LDB )
*
*     Compute R - A*Q'
*
      CALL ZGEMM( 'No transpose', 'Conjugate transpose', M, N, N, -CONE,
     $            A, LDA, Q, LDA, CONE, R, LDA )
*
*     Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) .
*
      RESID = ZLANGE( '1', M, N, R, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M, N ) ) ) / ANORM ) /
     $                 ULP
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute T*Q - Z'*B
*
      CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, N, P, CONE,
     $            Z, LDB, B, LDB, CZERO, BWK, LDB )
      CALL ZGEMM( 'No transpose', 'No transpose', P, N, N, CONE, T, LDB,
     $            Q, LDA, -CONE, BWK, LDB )
*
*     Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
*
      RESID = ZLANGE( '1', P, N, BWK, LDB, RWORK )
      IF( BNORM.GT.ZERO ) THEN
         RESULT( 2 ) = ( ( RESID / DBLE( MAX( 1, P, M ) ) ) / BNORM ) /
     $                 ULP
      ELSE
         RESULT( 2 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL ZLASET( 'Full', N, N, CZERO, CONE, R, LDA )
      CALL ZHERK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R,
     $            LDA )
*
*     Compute norm( I - Q'*Q ) / ( N * ULP ) .
*
      RESID = ZLANHE( '1', 'Upper', N, R, LDA, RWORK )
      RESULT( 3 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / ULP
*
*     Compute I - Z'*Z
*
      CALL ZLASET( 'Full', P, P, CZERO, CONE, T, LDB )
      CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, Z, LDB,
     $            ONE, T, LDB )
*
*     Compute norm( I - Z'*Z ) / ( P*ULP ) .
*
      RESID = ZLANHE( '1', 'Upper', P, T, LDB, RWORK )
      RESULT( 4 ) = ( RESID / DBLE( MAX( 1, P ) ) ) / ULP
*
      RETURN
*
*     End of ZGRQTS
*
      END